Therapeutic efficacy of melatonin in reducing retinal damage in an experimental model of early type 2 diabetes in rats.

J Pineal Res

Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina.

Published: March 2013

Diabetic retinopathy (DR) is a leading cause of acquired blindness in adults, mostly affected by type 2 diabetes mellitus (T2DM). We have developed an experimental model of early T2DM in adult rats which mimics some features of human T2DM at its initial stages and provokes significant retinal alterations. The aim of this work was to analyze the effect of melatonin on retinal changes induced by the moderate metabolic derangement. For this purpose, adult male Wistar rats received a control diet or 30% sucrose in the drinking water. Three weeks after this treatment, animals were injected with vehicle or streptozotocin (STZ, 25 mg/kg). One day or 3 wk after vehicle or STZ injection, animals were subcutaneously implanted with a pellet of melatonin. Fasting and postprandial glycemia, and glucose, and insulin tolerance tests were analyzed. At 12 wk of treatment, animals which received a sucrose-enriched diet and STZ showed significant differences in metabolic tests, as compared with control groups. Melatonin, which did not affect glucose metabolism in control or diabetic rats, prevented the decrease in the electroretinogram a-wave, b-wave, and oscillatory potential amplitude, and the increase in retinal lipid peroxidation, NOS activity, TNFα, Müller cells glial fibrillary acidic protein, and vascular endothelial growth factor levels. In addition, melatonin prevented the decrease in retinal catalase activity. These results indicate that melatonin protected the retina from the alterations observed in an experimental model of DR associated with type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12008DOI Listing

Publication Analysis

Top Keywords

experimental model
12
type diabetes
12
model early
8
treatment animals
8
prevented decrease
8
melatonin
6
retinal
5
therapeutic efficacy
4
efficacy melatonin
4
melatonin reducing
4

Similar Publications

Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.

View Article and Find Full Text PDF

Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.

Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.

View Article and Find Full Text PDF

Structural and Dynamic Assessment of Disease-Causing Mutations for the Carnitine Transporter OCTN2.

Mol Inform

January 2025

Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Muenster, Germany.

Primary carnitine deficiency (PCD) is a rare autosomal recessive genetic disorder caused by missense mutations in the SLC22A5 gene encoding the organic carnitine transporter novel type 2 (OCTN2). This study investigates the structural consequences of PCD-causing mutations, focusing on the N32S variant. Using an alpha-fold model, molecular dynamics simulations reveal altered interactions and dynamics suggesting potential mechanistic changes in carnitine transport.

View Article and Find Full Text PDF

An Injectable Multifunctional Nanosweeper Eliminates Cardiac Mitochondrial DNA to Reduce Inflammation.

Adv Healthc Mater

January 2025

Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Myocarditis, a leading cause of sudden cardiac death and heart transplantation, poses significant treatment challenges. The study of clinical samples from myocarditis patients reveals a correlation between the pathogenesis of myocarditis and cardiomyocyte mitochondrial DNA (mtDNA). During inflammation, the concentration of mtDNA in cardiomyocytes increases.

View Article and Find Full Text PDF

Amnesia is a memory disorder marked by the inability to recall or acquire information. Hence, drugs that also target the neurogenesis process constitute a hope to discover a cure against memory disorders. This study is aimed at evaluating the antiamnesic and neurotrophic effects of the aqueous extract of () on in vivo and in vitro models of excitotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!