Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this article we develop an ideal observer analysis of human VWM by deriving the expected behavior of an optimally performing but limited-capacity memory system. This analysis is framed around rate-distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in 2 empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (e.g., how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis-one that allows variability in the number of stored memory representations but does not assume the presence of a fixed item limit-provides an excellent account of the empirical data and further offers a principled reinterpretation of existing models of VWM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646905 | PMC |
http://dx.doi.org/10.1037/a0029856 | DOI Listing |
Eur Arch Otorhinolaryngol
January 2025
Hatay Mustafa Kemal University Otorhinolaryngology Department, Hatay, Turkey.
Purpose: Tympanoplasty is a surgical procedure performed to cure middle ear infections and restore normal middle ear function. It is one of the most common procedures in otological surgery. Since Wullstein described tympanoplasty, the microscope has been a widely used surgical tool in otological surgery.
View Article and Find Full Text PDFSci Rep
January 2025
University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 680-749, Republic of Korea.
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
The Baranyi and Geeraerd models are two of the most reliable models for the description of, respectively, microbial growth and inactivation. They are defined as a system of differential equations, whose algebraic solution can describe the microbial response during isothermal conditions, especially when combined with suitable secondary models. However, there are still large uncertainties regarding the best functions to use as secondary models for the lag phase duration (λ) and the shoulder length (S).
View Article and Find Full Text PDFViruses
December 2024
Thomas H. Gosnell School for Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.
Vesicular Stomatitis Virus (VSV) has emerged as a promising candidate for various clinical applications, including vaccine development, virus pseudotyping, and gene delivery. Its broad host range, ease of propagation, and lack of pre-existing immunity in humans make it ideal for therapeutic use. VSV's potential as an oncolytic virus has garnered attention; however, resistance to VSV-mediated oncolysis has been observed in some cell lines and tumor types, limiting its effectiveness.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan.
The bunching onion is an important leafy vegetable, prized for its distinctive flavor and color. It is consumed year-round in Japan, where a stable supply is essential. However, in recent years, the challenges posed by climate change and global warming have resulted in adverse effects on bunching onions, including stunted growth, discoloration, and the development of leaf tipburn, threatening both crop quality and yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!