Porphycenes have been shown to exhibit many advantageous properties when it comes to the application of two-photon absorption (TPA), a technique with potential use in the area of photodynamic therapy (PDT). A computational study of structure-reactivity relationships in the one- and two-photon absorption spectra of a series of 2,7,12,17-substituted porphycenes has been carried out using linear and quadratic density functional response theory. The focus has been on determining the effect on the spectra of electron donating and withdrawing substituents, the outcome of extending the conjugation lengths to these substituents, and the consequence of formation of metallo-porphycene complexes. In particular, we have looked at the use of TPA in order to improve the penetration depth of the therapeutic light dose, in terms of the position of the absorption maximum with respect to the optical window of tissue penetration, as well as the effect on the TPA cross section. The extent of conjugation was shown to be particularly crucial for increasing the TPA cross section, for both the electron withdrawing and donating substituents, while the inclusion of a metal in the center of the macrocycle was shown to benefit the absorption wavelength in terms of tissue penetration considerations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp305063eDOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
two-photon absorption
8
tissue penetration
8
tpa cross
8
two-photon absorption-molecular
4
absorption-molecular structure
4
structure investigation
4
investigation porphycene
4
porphycene chromophore
4
chromophore potential
4

Similar Publications

Photodynamic therapy of cancer-associated infections.

Photochem Photobiol

December 2024

Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

Pathogens can be involved in tumor initiation, promotion, and progression through different mechanisms, and their treatment can prevent new cancer cases, improve outcomes, and revert poor-prognostic phenotypes. Photodynamic therapy (PDT) successfully treats different types of cancers and infections and, therefore, has a unique potential to address their combination. However, we believe this potential has been underutilized, and few researchers have investigated the impacts of PDT of both infection-related and cancer-related outcomes at once.

View Article and Find Full Text PDF

Background: Conventional photodynamic therapy (cPDT) is an effective treatment option for field cancerization and multiple actinic keratoses (AK). The main side effect of cPDT is pain during illumination which in severe cases might necessitate early termination of treatment. Modification of treatment parameters such as light dose and fluence rate is a promising approach to mitigate PDT-associated pain.

View Article and Find Full Text PDF

Ferroptosis: A novel cell death modality in or synergistic therapeutic strategy for photodynamic therapy.

Photodiagnosis Photodyn Ther

December 2024

Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China. Electronic address:

Although there has been significant progress in current comprehensive anticancer treatments centered on surgery, postoperative recurrence and tumor metastasis still significantly affect both prognosis and quality of life of the patient. Hence, the development of precisely targeted tumor therapies and exploration of immunotherapy represent ideal strategies for tumor treatment. Photodynamic therapy (PDT) is a localized and relatively safe treatment modality that not only induces multiple modes of tumor cell death but also mediates the secondary immunological responses against tumor resistance and metastasis.

View Article and Find Full Text PDF

Role of antimicrobial photodynamic therapy for the management of peri-implant diseases among habitual nicotinic product users: A systematic review.

Photodiagnosis Photodyn Ther

December 2024

Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia. Electronic address:

Objective: The objective was to systematically review original studies that assessed the influence of antimicrobial photodynamic therapy (aPDT) for managing peri-implant diseases among habitual nicotinic product (NP) users.

Methods: The research question was "Is aPDT effective for managing peri-implant diseases among NP users?" Indexed databases (PubMed/Medline, EMBASE, Scopus, and ISI Web of Knowledge) and Google Scholar were searched up to and including December 2024 without time and language barriers. Using Boolean operators, the following keywords were searched in different combinations: antimicrobial photodynamic therapy; crestal bone loss; peri-implant diseases; probing depth; nicotine; and smoking.

View Article and Find Full Text PDF

Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!