Classical to quantum in large-number limit.

Philos Trans A Math Phys Eng Sci

Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK.

Published: October 2012

We construct a quantumness witness following the work of Alicki & van Ryn (AvR). We reformulate the AvR test by defining it for quantum states rather than for observables. This allows us to identify the necessary quantities and resources to detect quantumness for any given system. The first quantity turns out to be the purity of the system. When applying the witness to a system with even moderate mixedness, the protocol is unable to reveal any quantumness. We then show that having many copies of the system leads the witness to reveal quantumness. This seems contrary to the Bohr correspondence, which asserts that, in the large-number limit, quantum systems become classical, whereas the witness shows quantumness when several non-quantum systems, as determined by the witness, are considered together. However, the resources required to detect the quantumness increase dramatically with the number of systems. We apply the quantumness witness for systems that are highly mixed but in the large-number limit that resembles nuclear magnetic resonance (NMR) systems. We make several conclusions about detecting quantumness in NMR-like systems.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2011.0353DOI Listing

Publication Analysis

Top Keywords

large-number limit
12
quantumness
8
quantumness witness
8
detect quantumness
8
reveal quantumness
8
witness
6
systems
6
classical quantum
4
quantum large-number
4
limit construct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!