BACKGROUND New-onset Alzheimer disease (AD) is often attributed to degenerative changes in the hippocampus. However, the contribution of regionally distributed small vessel cerebrovascular disease, visualized as white matter hyperintensities (WMHs) on magnetic resonance imaging, remains unclear. OBJECTIVE To determine whether regional WMHs and hippocampal volume predict incident AD in an epidemiological study. DESIGN A longitudinal community-based epidemiological study of older adults from northern Manhattan, New York. SETTING The Washington Heights/Inwood Columbia Aging Project. PARTICIPANTS Between 2005 and 2007, 717 participants without dementia received magnetic resonance imaging scans. A mean (SD) of 40.28 (9.77) months later, 503 returned for follow-up clinical examination and 46 met criteria for incident dementia (45 with AD). Regional WMHs and relative hippocampal volumes were derived. Three Cox proportional hazards models were run to predict incident dementia, controlling for relevant variables. The first included all WMH measurements; the second included relative hippocampal volume; and the third combined the 2 measurements. MAIN OUTCOME MEASURE Incident AD. RESULTS White matter hyperintensity volume in the parietal lobe predicted time to incident dementia (hazard ratio [HR] = 1.194; P = .03). Relative hippocampal volume did not predict incident dementia when considered alone (HR = 0.419; P = .77) or with the WMH measures included in the model (HR = 0.302; P = .70). Including hippocampal volume in the model did not notably alter the predictive utility of parietal lobe WMHs (HR = 1.197; P = .049). CONCLUSIONS The findings highlight the regional specificity of the association of WMHs with AD. It is not clear whether parietal WMHs solely represent a marker for cerebrovascular burden or point to distinct injury compared with other regions. Future work should elucidate pathogenic mechanisms linking WMHs and AD pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597387 | PMC |
http://dx.doi.org/10.1001/archneurol.2012.1527 | DOI Listing |
iScience
December 2024
Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
Several lines of evidence demonstrate that microbiota influence brain development. Using high-resolution magnetic resonance imaging (MRI), this study examined the impact of microbiota status on brain volume and revealed microbiota-related differences that were sex and brain region dependent. Cortical and hippocampal regions demonstrate increased sensitivity to microbiota status during the first 5 weeks of postnatal life, effects that were greater in male germ-free mice.
View Article and Find Full Text PDFEnviron Res
December 2024
Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany; University Medical Center Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany; Max Planck-UCL Center for Computational Psychiatry and Ageing Research. Electronic address:
It is by now well known that the environment has a major impact on people's life, but the neural structures involved in this relationship remain to be explored. Most studies investigating this relationship only focus on single environmental predictors. In order to understand how the multitude of factors constituting the living environment relate to brain structure we used data from the UK Biobank (n= 21,094; age Mean=63.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
Introduction: Alzheimer's disease (AD) is now diagnosed biologically. Since subjective cognitive decline (SCD) may indicate preclinical AD, assessing AD-biomarkers is crucial. We investigated cognitive and neurodegenerative trajectories in SCD over 24 months based on biomarker positivity, and evaluated the predictive value of plasma biomarkers.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2024
Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. Electronic address:
Backgrounds: Aberrant brain structures in schizophrenia have been widely explored. However, the causal effects of negative symptoms on brain structural alterations are still unclear. This study aims to explore the synchronous and progressive alterations in gray matter volume (GMV) associated with negative symptoms.
View Article and Find Full Text PDFNat Aging
December 2024
Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile.
Structural inequality, the uneven distribution of resources and opportunities, influences health outcomes. However, the biological embedding of structural inequality in aging and dementia, especially among underrepresented populations, is unclear. We examined the association between structural inequality (country-level and state-level Gini indices) and brain volume and connectivity in 2,135 healthy controls, and individuals with Alzheimer's disease and frontotemporal lobe degeneration from Latin America and the United States.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!