Anisotropic elasticity of DyScO3 substrates.

J Phys Condens Matter

Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic.

Published: September 2012

The full elastic tensor of orthorhombic dysprosium scandate (DyScO(3)) at room temperature was determined by resonant ultrasound spectroscopy (RUS). Measurements were performed on three 500 μm thick substrates with orientations (110), (100) and (001) in the Pbnm (a < b < c) setting. For this purpose, a modification of the RUS method was developed, enabling simultaneous processing of the resonant spectra of several platelet-shaped samples with different crystallographic orientations. The obtained results are compared with ab initio calculations and with elastic constants of other rare-earth scandates, and are used for discussion of the in-plane elasticity of the (110)-oriented substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/24/38/385404DOI Listing

Publication Analysis

Top Keywords

anisotropic elasticity
4
elasticity dysco3
4
dysco3 substrates
4
substrates full
4
full elastic
4
elastic tensor
4
tensor orthorhombic
4
orthorhombic dysprosium
4
dysprosium scandate
4
scandate dysco3
4

Similar Publications

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

Effects of Printing Orientation on the Tensile, Thermophysical, Smoke Density, and Toxicity Properties of Ultem 9085.

Polymers (Basel)

January 2025

Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia.

Despite the impressive properties of additively manufactured products, their inherent anisotropy is a crucial challenge for polymeric parts made via fused filament fabrication (FFF). This study compared the tensile, thermophysical, smoke density, and toxicity characteristics of Ultem 9085 (a blend of polyetherimide and polycarbonate) for samples printed in various orientations (X, Y, and Z). The results revealed that mechanical properties, such as elastic modulus and tensile strength, significantly differed from the Z printing orientation, particularly in the X and Y printing layer orientations.

View Article and Find Full Text PDF

The present work investigates the interfacial and atomic layer-dependent mechanical properties, SOC-entailing phonon band structure, and comprehensive electron-topological-elastic integration of ZrTe and NiTe. The anisotropy of Young's modulus, Poisson's ratio, and shear modulus are analyzed using density functional theory with the TB-mBJ approximation. NiTe has higher mechanical property values and greater anisotropy than ZrTe.

View Article and Find Full Text PDF

Tendon-mimicking anisotropic alginate-based double-network composite hydrogels with enhanced mechanical properties and high impact absorption.

Carbohydr Polym

March 2025

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:

Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched.

View Article and Find Full Text PDF

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!