Grafting of a gold complex to an organo-polyoxometalate delivers catalytically active bitopic hybrids. The gold end activates allenes, while the metal-oxide surface can capture protons (see scheme). The scope of the gold-catalyzed oxacyclization of allenols is expanded to highly sensitive tertiary benzylic alcohols.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201201007DOI Listing

Publication Analysis

Top Keywords

self-buffering hybrid
4
hybrid gold-polyoxometalate
4
gold-polyoxometalate catalysts
4
catalysts catalytic
4
catalytic cyclization
4
cyclization acid-sensitive
4
acid-sensitive substrates
4
substrates grafting
4
grafting gold
4
gold complex
4

Similar Publications

A MOFs/MIPs@GAs Ternary Composite Catalytic System with Graphene Oxide Aerogels as the Multifunctional Skeleton for High-Efficiency Detoxification of Organophosphate Nerve Agents in Pure Water.

ACS Appl Mater Interfaces

September 2024

Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China.

Organophosphate nerve agents (OPs) are widely used as pesticides and chemical agents and pose a threat to human health and life. At present, most personal protective equipment usually only serves as physical protection and does not have an effect of chemical detoxification. In this work, ultra lightweight graphene oxide aerogels (GAs) have been used as a multifunctional skeleton to integrate the metal-organic frameworks (MOFs) and molecularly imprinted polymers (MIPs) together for obtaining a high-performance hybrid material (MOFs/MIPs@GAs) on hydrolysis detoxification of OPs.

View Article and Find Full Text PDF

Grafting of a gold complex to an organo-polyoxometalate delivers catalytically active bitopic hybrids. The gold end activates allenes, while the metal-oxide surface can capture protons (see scheme). The scope of the gold-catalyzed oxacyclization of allenols is expanded to highly sensitive tertiary benzylic alcohols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!