The purpose of the present study was to utilize a well-established rat glioma to evaluate boron neutron capture therapy for the treatment of malignant brain tumors. Boron-10 (10B) is a stable isotope which, when irradiated with thermal neutrons, produces a capture reaction yielding high linear energy transfer particles (10B + 1nth----[11B]----4He(alpha) + 7Li + 2.79 MeV). The F98 tumor is an anaplastic glioma of CD Fischer rat origin with an aggressive biological behavior similar to that of human glioblastoma multiforme. F98 cells were implanted intracerebrally into the caudate nuclei of Fischer rats. Seven to 12 days later the boron-10-enriched polyhedral borane, Na2B12H11SH, was administered intravenously at a dose of 50 mg/kg body weight at varying time intervals ranging from 3 to 23.5 hours before neutron irradiation. Pharmacokinetic studies revealed blood 10B values ranging from 0.33 to 10.5 micrograms/ml depending upon the time after administration, a T1/2 of 6.2 hours, normal brain 10B concentrations of 0.5 microgram/g, and tumor values ranging from 1.1 to 12.8 micrograms/g. No therapeutic gain was seen if the capture agent was given at 3 or 6 hours before irradiation with 4 x 10(12) n/cm2 (10 MW-min; 429 cGy). A 13.5-hour preirradiation interval resulted in a mean survival of 37.8 days (P less than 0.01), compared to 30.5 days (P less than 0.03) for irradiated controls and 22.1 days for untreated animals.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006123-199001000-00007DOI Listing

Publication Analysis

Top Keywords

boron neutron
8
neutron capture
8
capture therapy
8
rat glioma
8
values ranging
8
capture
4
therapy rat
4
glioma purpose
4
purpose study
4
study utilize
4

Similar Publications

Modeling inorganic glasses requires an accurate representation of interatomic interactions, large system sizes to allow for intermediate-range structural order, and slow quenching rates to eliminate kinetically trapped structural motifs. Neither first principles-based nor force field-based molecular dynamics (MD) simulations satisfy these three criteria unequivocally. Herein, we report the development of a machine learning potential (MLP) for a classic glass, B2O3, which meets these goals well.

View Article and Find Full Text PDF

Heterogeneous head phantom for validating treatment planning system in boron neutron capture therapy.

Appl Radiat Isot

January 2025

Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:

In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.

View Article and Find Full Text PDF

Purpose: Boron neutron capture therapy (BNCT) perform as a treatment option for locally advanced or recurrent unresectable head and neck cancers since June 2020 in Japan. The effect of BNCT on parotid carcinoma, which presents a variety of histologic types, remains unclear. The object of this study was to investigate the antitumor efficacy of BNCT against parotid gland carcinoma by focusing on LAT1, which is involved in the uptake of L-BPA, the boron compound used in BNCT.

View Article and Find Full Text PDF

A 77-year-old man was referred to our department because of macrohematuria, oliguria, and a serum creatinine level of 2.47 mg/dL during boron neutron capture therapy (BNCT) for oropharyngeal cancer. At baseline, his creatinine level had been 0.

View Article and Find Full Text PDF

Rechargeable lithium-ion batteries (LIBs) are critical for enabling sustainable energy storage. The capacity of cathode materials is a major limiting factor in the LIB performance, and doping has emerged as an effective strategy for enhancing the electrochemical properties of nickel-rich layered oxides such as NCM811. In this study, boron is homogeneously incorporated into the tetrahedral site of NCM811 through co-precipitation, leading to an inductive effect on transition metal (TM)-O-B bonds that delayed structural collapse and reduced oxygen release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!