Viroid-caused pathogenesis is a specific process dependent on viroid and host genotype(s), and may involve viroid-specific small RNAs (vsRNAs). We describe a new PSTVd variant C3, evolved through sequence adaptation to the host chamomile (Matricaria chamomilla) after biolistic inoculation with PSTVd-KF440-2, which causes extraordinary strong ('lethal') symptoms. The deletion of a single adenine A in the oligoA stretch of the pathogenicity (P) domain appears characteristic of PSTVd-C3. The pathogenicity and the vsRNA pool of PSTVd-C3 were compared to those of lethal variant PSTVd-AS1, from which PSTVd-C3 differs by five mutations located in the P domain. Both lethal viroid variants showed higher stability and lower variation in analyzed vsRNA pools than the mild PSTVd-QFA. PSTVd-C3 and -AS1 caused similar symptoms on chamomile, tomato, and Nicotiana benthamiana, and exhibited similar but species-specific distributions of selected vsRNAs as quantified using TaqMan probes. Both lethal PSTVd variants block biosynthesis of lignin in roots of cultured chamomile and tomato. Four 'expression markers' (TCP3, CIPK, VSF-1, and VPE) were selected from a tomato EST library to quantify their expression upon viroid infection; these markers were strongly downregulated in tomato leaf blades infected by PSTVd-C3- and -AS1 but not by PSTVd-QFA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/hsz-2011-0286 | DOI Listing |
Int J Mol Sci
December 2024
Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.
Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (), aloe vera (), calendula (), curcumin (), lavender (), licorice (), peppermint (), and evening primrose ().
View Article and Find Full Text PDFFitoterapia
January 2025
Division of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece. Electronic address:
The Tripleurospermum (L.) Sch.Bip, (Asteraceae) genus, comprises 30 to 40 species widely spread in the northern hemisphere, and across the Mediterranean region.
View Article and Find Full Text PDFPeptic ulcer disease remains a prevalent gastrointestinal disorder worldwide. Current treatments often have limitations, sparking interest in alternative therapies from medicinal plants. This review examines the gastroprotective potential of 54 North African medicinal plants against peptic ulcers.
View Article and Find Full Text PDFPlant Sci
January 2025
School of Life Science, Anhui Agricultural University, Hefei, China. Electronic address:
German chamomile (Matricaria chamomilla L.) is a traditional medicinal aromatic plant, and the sesquiterpenoids in its flowers have important medicinal value. The (E)-β-farnesene (EβF) is one of the active sesquiterpenoid components and is also a major component of aphid alarm pheromones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!