Cells adhering onto implant surfaces are subjected to oxidative stress during wound healing processes. Although titanium and its alloys are among the most frequently used biomaterials in orthopedic and dental implants, titanium surfaces do not have antioxidant properties, and cells grown on these surfaces can show permanent oxidative stress. The present study assessed the antioxidant property and osteogenic properties of titanium samples with or without oxidation treatments. A thick rutile TiO₂ film was observed on thermally oxidized titanium surfaces, while amorphous anatase TiO₂ formed on anodically oxidized titanium surfaces prepared by discharging in 1 M Na₂HPO₄. A resistance to the depletion of reduced glutathione in adherent osteoblasts, which correlates with antioxidant behavior, occurred on anodically oxidized titanium. Enhanced osteogenic gene expressions and nano-biomechanical properties of mineralized tissue were achieved on anodically oxidized titanium, in comparison with thermally oxidized or untreated titanium. Thus, anodic oxidation by discharging in electrolyte is expected to be a useful surface modification for titanium implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2012.01.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!