In Japan, rice paddies play an important role as a substitute habitat for wetland species, and support rich indigenous ecosystems. However, since the 1950s, agricultural modernization has altered the rice paddy environment, and many previously common species are now endangered. It is urgently necessary to evaluate rice paddies as habitats for conservation. Among the species living in rice paddies, frogs are representative and are good indicator species, so we focused on frog species and analyzed the influence of environmental factors on their habitat use. We found four frog species and one subspecies (Hyla japonica, Pelophylax nigromaculatus, Glandirana rugosa, Lithobates catesbeianus, and Pelophylax porosa brevipoda) at our study sites in Shiga prefecture. For all but L. catesbeianus, we analyzed the influence of environmental factors related to rice paddy structure, water management and availability, agrochemical use, connectivity, and land use on breeding and non-breeding habitat use. We constructed generalized additive mixed models with survey date as the smooth term and applied Akaike's information criterion to choose the bestranked model. Because life histories and biological characteristics vary among species, the factors affecting habitat use by frogs are also expected to differ by species. We found that both breeding and non-breeding habitat uses of each studied species were influenced by different combinations of environmental factors and that in most cases, habitat use showed seasonality. For frog conservation in rice paddies, we need to choose favorable rice paddy in relation to surrounding land use and apply suitable management for target species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2108/zsj.29.577 | DOI Listing |
Comp Biochem Physiol Part D Genomics Proteomics
December 2024
Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China. Electronic address:
As a core element of the Globally Important Agricultural Heritage System (GIAHS), the Qingtian paddy field carp (Cyprinus carpio, PF-carp) has been domesticated for over 1200 years in paddy field environments. This species has successfully adapted to shallow-water conditions in paddy fields. To reveal the adaptation mechanism, we conducted transcriptome sequencing on the hepatopancreas of PF-carp under two temperature conditions (28 °C and 38 °C) and concurrently analysed RNA-seq data from hypoxic conditions in the same tissue.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy.
Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.
View Article and Find Full Text PDFMetabolites
December 2024
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
Rice-fish farming is an ancient and enduring aquaculture model in China. This study aimed to assess the variations in digestive enzymes, antioxidant properties, glucose metabolism, and nutritional content between reared in paddy fields and ponds. Notably, the levels of amylase and trypsin in from rice paddies were considerably higher compared to those from ponds.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.
Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!