Cardiac myofibroblasts: cells out of balance. A new thematic series.

Fibrogenesis Tissue Repair

Principal Investigator, Laboratory of Molecular Cardiology, Department of Physiology, Faculty of Medicine and the Institute of Cardiovascular Sciences, St, Boniface General Hospital Research Centre, University of Manitoba, 351 Tache Ave, Manitoba, R2H 2A6, Winnipeg, Canada.

Published: September 2012

We are pleased to introduce a new thematic series dealing with cardiac fibrosis and its association with cardiovascular diseases. A wide variety of cardiovascular diseases are associated with cardiac fibrosis, which is now widely recognized to be not a secondary, but rather a primary contributor to cardiac dysfunction. The purpose of the current series of papers and reviews is to provide the reader with an up-to-date synopsis of the very latest research results and hypotheses that impact on cardiac fibrosis and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563470PMC
http://dx.doi.org/10.1186/1755-1536-5-14DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
12
thematic series
8
cardiovascular diseases
8
cardiac
5
cardiac myofibroblasts
4
myofibroblasts cells
4
cells balance
4
balance thematic
4
series pleased
4
pleased introduce
4

Similar Publications

Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.

Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.

View Article and Find Full Text PDF

Left ventricular hypertrophy in young hypertensives: the possible crosstalk of mTOR and angiotensin-II -a case-control study.

BMC Cardiovasc Disord

January 2025

Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.

Background: Hypertension is a major cause of cardiac dysfunction. The earliest manifestation is left ventricular remodeling/hypertrophy. The occurrence of adverse cardiac remodeling and outcomes occurs irrespective of age in blacks.

View Article and Find Full Text PDF

Madecassoside mitigates acute myocardial infarction injury by activating the PKCB/SPARC signaling pathway.

Acta Pharmacol Sin

January 2025

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.

The current treatments and drugs of myocardial infarction (MI) remain insufficient. In recent years, natural products have garnered significant attention for their potential in treating cardiovascular diseases due to their availability and lower toxicity. Saponins, in particular, showed promising effects for cardiac protection.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 6 ameliorates cardiac hypertrophy by regulating CTSD/HSP90α signaling during pressure overload.

Acta Pharmacol Sin

January 2025

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.

View Article and Find Full Text PDF

Following our previous experience with cardiac xenotransplantation of a genetically modified porcine heart into a live human, we sought to achieve improved results by selecting a healthier recipient and through more sensitive donor screening for potential zoonotic pathogens. Here we transplanted a 10-gene-edited pig heart into a 58-year-old man with progressive, debilitating inotrope-dependent heart failure due to ischemic cardiomyopathy who was not a candidate for standard advanced heart failure therapies. He was maintained on a costimulation (anti-CD40L, Tegoprubart) blockade-based immunomodulatory regimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!