Cells respond to topographical, mechanical and biochemical characteristics of the surrounding environment. Capability to reconstruct these factors individually, and also acting in accord, would facilitate systematic investigations of a multitude of related biological and tissue engineering questions. The subject of the present review is a group of technologies allowing realization of customized cell-culture matrices. These methods utilize photochemistry induced by multiphoton absorption and are carried out using essentially identical equipment. Fabrication of 2D microstructured substrates, complex 3D scaffolds, containing actively induced topographies, and immobilization of biomolecules in a spatially defined manner was demonstrated with these techniques. The reviewed reports indicate that multiphoton processing is a promising technology platform for the development of standard biomimetic microenvironments for 3D cell culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1586/erd.12.48 | DOI Listing |
Sci Rep
January 2025
University of Novi Sad, BioSense Institute, Dr Zorana Djindjica 1, Novi Sad, 21000, Serbia.
Although various sensors specifically developed for target analytes are available, affordable biosensing solutions with broad applicability are limited. In this study, a cost-effective biosensor for detecting human epidermal growth factor receptor 2 (HER2) was developed using custom-made gold leaf electrodes (GLEs). A novel strategy for antibody immobilization on a gold surface, for the first time mediated by protein L and HER2-specific antibody trastuzumab, was examined using commercial screen-printed gold electrodes and GLEs.
View Article and Find Full Text PDFHistology is the gold standard for analyzing tissue structure and cell morphology. Immunostaining on thin tissue sections enables precise visualization of antigens and proteins. However, for cryosectioning small tissues such as organoids, spheroids, and tumoroids there is a lack of standardized, time- and cost-effective methods, limiting the throughput of analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Blood Components and Devices, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA.
Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III S/N, 45071, Toledo, Spain.
Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for metallic nanoparticle (NP) characterisation in terms of concentration and, taking into account several assumptions, also size. However, this technique faces challenges, such as the intrinsic matrix effect, which significantly impact the results when analysing real complex samples. This issue is critical for the calculations of key SP-ICP-MS parameters ultimately altering the final outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!