Objectives: Glycyrrhetinic acid is the main metabolite of glycyrrhizin and the main active component of Licorice root. This study was designed to investigate the in-vitro metabolism of glycyrrhetinic acid by liver microsomes and to examine possible metabolic interactions that glycyrrhetinic acid may have with other cytochrome P450 (CYP) substrates.
Methods: Glycyrrhetinic acid was incubated with rat liver microsomes (RLM) and human liver microsomes (HLM). Liquid chromatography tandem mass spectrometry was used for glycyrrhetinic acid or substrates identification and quantification.
Key Findings: The K(m) and V(max) values for HLM are 33.41 µm and 2.23 nmol/mg protein/min, respectively; for RLM the K(m) and V(max) were 24.24µm and 6.86 nmol/mg protein/min, respectively. CYP3A4 is likely to be the major enzyme responsible for glycyrrhetinic acid metabolism in HLM while CYP2C9 and CYP2C19 are considerably less active. Other human CYP isoforms have minimal or no activity toward glycyrrhetinic acid. The interactions of glycyrrhetinic acid and six CYP substrates, such as phenacetin, diclofenac, (S)-mephenytoin, dextromethorphan, chlorzoxazone and midazolam were also investigated. The inhibitory action of glycyrrhetinic acid was observed in CYP2C9 for 4-hydroxylation of diclofenac, CYP2C19 for 4'-hydroxylation of (S)-mephenytoin and CYP3A4 for 1'-hydroxylation of midazolam with half maximal inhibitory concentration (IC50) values of 4.3-fold, 3.8-fold and 9.6-fold higher than specific inhibitors in HLM, respectively. However, glycyrrhetinic acid showed relatively little inhibitory effect (IC50>400 µm) on phenacetin O-deethylation, dextromethorphan O-demethylation and chlorzoxazone 6-hydroxylation.
Conclusions: The study indicated that CYP3A4 is likely to be the major enzyme responsible for glycyrrhetinic acid metabolism in HLM while CYP2C9 and CYP2C19 are considerably less active. The results suggest that glycyrrhetinic acid has the potential to interact with a wide range of xenobiotics or endogenous chemicals that are CYP2C9, CYP2C19 and CYP3A4 substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.2042-7158.2012.01516.x | DOI Listing |
BMJ Case Rep
January 2025
SUT Hospital, Thiruvananthapuram, Kerala, India.
This case report describes an adult man in his 50s with a history of type 2 diabetes and previously well-controlled hypertension, who presented with uncontrolled hypertension, muscle weakness and fatigue. Biochemical testing revealed hypokalaemia. There was no evidence of renal/renovascular disease.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA. Electronic address:
Glioblastoma (GBM), the most common primary brain tumor, lacks effective treatments. Emerging evidence suggests mitochondria as a promising therapeutic target, albeit successfully targeting represents a major challenge. Recently, we discovered a group of triterpenes that can self-assemble into nanoparticles (NPs) for cancer treatment.
View Article and Find Full Text PDFChin J Nat Med
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME.
View Article and Find Full Text PDFFood Chem Toxicol
December 2024
Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
Bisphenol A (BPA) has been commonly used in various consumer products, including water bottles, food containers, and canned food linings. However, there are concerns about its potential toxicity to human health, particularly its impact on the liver and kidneys. The objective of this research was to investigate the potential ameliorative effects of 18β-glycyrrhetinic acid (GA) against BPA-induced hepatotoxicity and nephrotoxicity in rats.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA.
Background: Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity.
Methods And Results: Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!