A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

STAT3-mediated astrogliosis protects myelin development in neonatal brain injury. | LitMetric

Objective: Pathological findings in neonatal brain injury associated with preterm birth include focal and/or diffuse white matter injury (WMI). Despite the heterogeneous nature of this condition, reactive astrogliosis and microgliosis are frequently observed. Thus, molecular mechanisms by which glia activation contribute to WMI were investigated.

Methods: Postmortem brains of neonatal brain injury were investigated to identify molecular features of reactive astrocytes. The contribution of astrogliosis to WMI was further tested in a mouse model in genetically engineered mice.

Results: Activated STAT3 signaling in reactive astrocytes was found to be a common feature in postmortem brains of neonatal brain injury. In a mouse model of neonatal WMI, conditional deletion of STAT3 in astrocytes resulted in exacerbated WMI, which was associated with delayed maturation of oligodendrocytes. Mechanistically, the delay occurred in association with overexpression of transforming growth factor (TGF)β-1 in microglia, which in healthy controls decreased with myelin maturation in an age-dependent manner. TGFβ-1 directly and dose-dependently inhibited the maturation of purified oligodendrocyte progenitors, and pharmacological inhibition of TGFβ-1 signaling in vivo reversed the delay in myelin development. Factors secreted from STAT3-deficient astrocytes promoted elevated TGFβ-1 production in cultured microglia compared to wild-type astrocytes.

Interpretation: These results suggest that myelin development is regulated by a mechanism involving crosstalk between microglia and oligodendrocyte progenitors. Reactive astrocytes may modify this signaling in a STAT3-dependent manner, preventing the pathological expression of TGFβ-1 in microglia and the impairment of oligodendrocyte maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514566PMC
http://dx.doi.org/10.1002/ana.23670DOI Listing

Publication Analysis

Top Keywords

neonatal brain
16
brain injury
16
myelin development
12
reactive astrocytes
12
postmortem brains
8
brains neonatal
8
mouse model
8
tgfβ-1 microglia
8
oligodendrocyte progenitors
8
neonatal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!