This study evaluated the biocompatibility of Biosilicate® scaffolds by means of histopathological, cytotoxicity, and genotoxicity analysis. The histopathologic analysis of the biomaterial was performed using 65 male rats, distributed into the groups: control and Biosilicate®, evaluated at 7, 15, 30, 45, and 60 days after implantation. The cytotoxicity analysis was performed by the methyl thiazolyl tetrazolium (MTT) assay, with various concentrations of extracts from the biomaterial in culture of osteoblasts and fibroblasts after 24, 72, and 120 h. The genotoxicity analysis (comet assay) was performed in osteoblasts and fibroblasts after contact with the biomaterial during 24, 72, and 96 h. In the histopathology analysis, we observed a foreign body reaction, characterized by the presence of granulation tissue after 7 days of implantation of the biomaterial, and fibrosis connective tissue and multinucleated giant cells for longer periods. In the cytotoxicity analysis, extracts from the biomaterial did not inhibit the proliferation of osteoblasts and fibroblasts, and relatively low concentrations (12.5% and 25%) stimulated the proliferation of both cell types after 72 and 120 h. The analysis of genotoxicity showed that Biosilicate® did not induce DNA damage in both lineages tested in all periods. The results showed that the Biosilicate® scaffolds present in vivo and in vitro biocompatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.34360DOI Listing

Publication Analysis

Top Keywords

osteoblasts fibroblasts
12
histopathological cytotoxicity
8
cytotoxicity genotoxicity
8
biosilicate® scaffolds
8
genotoxicity analysis
8
days implantation
8
cytotoxicity analysis
8
extracts biomaterial
8
analysis
7
biosilicate®
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!