We assessed the production of the canonical Th2 cytokine IL-4 by NKT cells directly in vivo using IL-4-substituting strains of reporter mice that provide faithful and sensitive readouts of cytokine production without the confounding effects of in vitro stimulation. Analysis in naïve animals revealed an "innate" phase of IL-4 secretion that did not need to be triggered by administration of a known NKT cell ligand. This secretion was by immature NKT cells spanning Stage 1 of the maturation process in the thymus (CD4(+) CD44(lo) NK1.1(-) cells) and Stage 2 (CD4(+) CD44(hi) NK1.1(-) cells) in the spleen. Like ligand-induced IL-4 production by mature cells, this innate activity was independent of an initial source of IL-4 protein and did not require STAT6 signaling. A more sustained level of innate IL-4 production was observed in animals on a BALB/c background compared with a C57BL/6 background, suggesting a level of genetic regulation that may contribute to the "Th2-prone" phenotype in BALB/c animals. These observations indicate a regulated pattern of IL-4 expression by maturing NKT cells, which may endow these cells with a capacity to influence the development of surrounding cells in the thymus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050521PMC
http://dx.doi.org/10.1189/jlb.0512242DOI Listing

Publication Analysis

Top Keywords

nkt cells
16
cells
9
innate il-4
8
il-4 secretion
8
nk11- cells
8
il-4 production
8
il-4
7
nkt
5
immature murine
4
murine nkt
4

Similar Publications

Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures.

View Article and Find Full Text PDF

Spinal cord injury (SCI) increasingly affects aged individuals, where functional impairment and mortality are highest. However, the aging-dependent mechanisms underpinning tissue damage remain elusive. Here, we find that natural killer-like T (NKLT) cells seed the intact aged human and murine spinal cord and multiply further after injury.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

GIMAP1 interacts with TMX1 to improve lung adenocarcinoma prognosis by influencing tumor immune microenvironment.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. Electronic address:

Recent studies have indicated that the GIMAP family is downregulated in lung cancer and correlates with poor prognosis, although the underlying mechanisms remain unclear. This study aimed to elucidate the mechanism behind GIMAP1 downregulation in lung cancer. Bioinformatics tools were employed to assess the correlation between the GIMAP family and various cancers.

View Article and Find Full Text PDF

Gastric cancer (GC) ranks 3rd in incidence rate and mortality rate among malignant tumors in China, and the age-standardized five-year net survival rate of patients with GC was 35.9% from 2010 to 2014. The tumor immune microenvironment (TIME), which includes T cells, macrophages, natural killer (NK) cells and B cells, significantly affects tumor progression, immunosuppression and drug resistance in patients with GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!