Optimizing lavage during knee arthroscopy: a three-dimensional MRI study.

J Magn Reson Imaging

Washington Township Medical Foundation, Fremont, California, USA.

Published: January 2013

Purpose: To determine the best positioning and the resulting fluid flow patterns inside the knee during arthroscopy, reducing the surgical morbidity associated with the arthroscopic irrigation and debridement of a septic knee joint.

Materials And Methods: Three-dimensional MRI, using an MRI-compatible human cadaveric knee arthroscopic model, generated fluid flow diagrams and velocity vector data. This was analyzed for six different arthroscopic configurations and at six different locations within the knee joint.

Results: At any one static arthroscopic position, fluid flow velocity differed at the various locations in the knee, often with statistically significantly greater flow at one location over another. In general, flow was greatest at the location at which the inflow cannula terminated and preferentially flowed directly to the outflow cannula location, neglecting spaces in the knee that were not on this direct path. Three-portal arthroscopy provided no benefit over two-portal arthroscopy.

Conclusion: To maximize arthroscopic lavage throughout all compartments in the knee, the arthroscopist must individually enter each space in the knee. Static arthroscopy in the setting of knee sepsis may lead to inadequate flow in certain areas of the knee and may lead to treatment failure. Three-portal arthroscopy does not improve lavage efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.23787DOI Listing

Publication Analysis

Top Keywords

fluid flow
12
knee
11
knee arthroscopy
8
three-dimensional mri
8
locations knee
8
three-portal arthroscopy
8
flow
6
arthroscopy
5
arthroscopic
5
optimizing lavage
4

Similar Publications

[Characteristics of immune response induced by mucosal immunization with recombinant adenovirus of Mycobacterium tuberculosis phosphodiesterase].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Microbiology and Pathogenic Biology, Air Force Military Medical University, Xi'an 710032, China. *Corresponding authors, E-mail:

Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF).

View Article and Find Full Text PDF

Motile cilia modulate neuronal and astroglial activity in the zebrafish larval brain.

Cell Rep

January 2025

Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway. Electronic address:

The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood.

View Article and Find Full Text PDF

Background: Continuous veno-venous hemodiafiltration (CVVHDF) is used in critically ill patients, but its impact on O₂ and CO₂ removal, as well as the accuracy of resting energy expenditure (REE) measurement using indirect calorimetry (IC) remains unclear. This study aims to evaluate the effects of CVVHDF on O₂ and CO₂ removal and the accuracy of REE measurement using IC in patients undergoing continuous renal replacement therapy.

Design: Prospective, observational, single-center study.

View Article and Find Full Text PDF

Impeller radial gap is one of important parts within a blood pump, which may affect the hemodynamics and hemocompatibility. In this study, computational fluid dynamics method was performed to evaluate the impact of radial gap sizes. The volume of scalar shear stress decreased with radial gap sizes increasing.

View Article and Find Full Text PDF

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!