Endocrine disrupting chemicals (EDCs) are known to mainly affect aquatic organisms, producing negative effects in aquaculture. Transformation of the estrogenic compounds 17β-estradiol (E2), bisphenol-A (BPA), nonylphenol (NP), and triclosan (TCS) by laccase of Coriolopsis gallica was studied. Laccase is able to efficiently transform them into polymers. The estrogenic activity of the EDCs and their laccase transformation products was evaluated in vitro as their affinity for the human estrogen receptor alpha (hERα) and for the ligand binding domain of zebrafish (Danio rerio) estrogen receptor alpha (zfERαLBD). E2, BPA, NP, and TCS showed higher affinity for the zfERαLBD than for hERα. After laccase treatment, no affinity was found, except a marginal affinity of E2 products for the zfERαLBD. Endocrine disruption studies in vivo on zebrafish were performed using the induction of vitellogenin 1 as a biomarker (VTG1 mRNA levels). The use of enzymatic bioreactors, containing immobilized laccase, efficiently eliminates the endocrine activity of BPA and TCS, and significantly reduces the effects of E2. The potential use of enzymatic reactors to eliminate the endocrine activity of EDCs in supply water for aquaculture is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-012-9825-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!