An analytical method utilizing chemical ionization gas chromatography-mass spectrometry was developed for the simultaneous determination of cyanide and thiocyanate in plasma. Sample preparation for this analysis required essentially one-step by combining the reaction of cyanide and thiocyanate with pentafluorobenzyl bromide and simultaneous extraction of the product into ethyl acetate facilitated by a phase-transfer catalyst, tetrabutylammonium sulfate. The limits of detection for cyanide and thiocyanate were 1 μM and 50 nM, respectively. The linear dynamic range was from 10 μM to 20 mM for cyanide and from 500 nM to 200 μM for thiocyanate with correlation coefficients higher than 0.999 for both cyanide and thiocyanate. The precision, as measured by %RSD, was below 9 %, and the accuracy was within 15 % of the nominal concentration for all quality control standards analyzed. The gross recoveries of cyanide and thiocyanate from plasma were over 90 %. Using this method, the toxicokinetic behavior of cyanide and thiocyanate in swine plasma was assessed following cyanide exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-012-6360-5 | DOI Listing |
Phys Chem Chem Phys
January 2025
Departamento de Química, Facultad de Ciencias, Universidad de Chile, P. O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
In this study, we focused on the mechanism of the electrocatalytic oxidation of thiocyanate, which in traditional electrodes typically requires high overpotentials. As models for reducing these overpotentials and catalyzing the reaction, we used a set of modified cobalt phthalocyanines (CoPc), known as electrocatalysts. Using DFT calculations, we explored how modifications to CoPc by adding electron-donating and withdrawing groups and the coordination of 4-amino thiophenol impact the oxidation process.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
The Biotechnology Center, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
This study reports the isolation and characterization of highly resistant bacterial and microalgal strains from an Egyptian wastewater treatment station to cyanide-containing compounds. The bacterial strain was identified as Bacillus licheniformis by 16S rRNA gene sequencing. The isolate removed up to 1 g L potassium cyanide, 3 g L benzonitrile, and 1 g L sodium salicylate when incubated as 10% v/v in MSM at 30 ℃.
View Article and Find Full Text PDFNeurotoxicology
December 2024
Université Catholique de Bukavu (UCB), Center for Tropical Diseases and Global Health (CTDGH), Bukavu, Democratic Republic Congo; University of Fribourg, Faculty of Science and Medicine, Department of Neuroscience and Movement Science, Fribourg, Switzerland.
Introduction: Chronic cassava-derived cyanide poisoning is associated with the appearance of konzo, a tropical spastic paraparesis due to selective upper motor neuron damage. Whether the disease is caused by a direct action of cyanide or its metabolites is still an open question. This preliminary study assessed the neurotoxic effects of thiocyanate (SCN) and cyanate (OCN), two cyanide metabolites hypothesized to be plausible toxic agents in konzo.
View Article and Find Full Text PDFAnal Chem
November 2024
Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China.
In this study, we developed ratiometric surface-enhanced Raman scattering (SERS) biosensors using Ag-Au alloy nanoflowers as SERS substrates, molecules having amide bonds and alkyne groups (Tag A) as Raman reporters, and sodium thiocyanate as an internal standard molecule (Tag B) for the sensitive detection of human carboxylesterase-1 (hCE1) in HepG-2 cells. The correlation between HepG-2 cell damage and hCE1 activity levels was investigated. Both Tag A's alkyne group and Tag B's cyanide group produced characteristic SERS signals in the Raman-silent region ( and , respectively).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!