Cellobiose dehydrogenases (CDHs) are extracellular glycosylated haemoflavoenzymes produced by many different wood-degrading and phytopathogenic fungi. Putative cellobiose dehydrogenase genes are recurrently discovered by genome sequencing projects in various phylogenetically distinct fungi. The genomes from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina were screened for candidate cdh genes, and one and three putative gene models were evidenced, respectively. Two putative cdh genes were selected and successfully expressed for the first time in Aspergillus niger. CDH activity was measured for both constructions (CDHcc and CDHpa), and both recombinant CDHs were purified to homogeneity and subsequently characterised. Kinetic constants were determined for several carbohydrates including β-1,4-linked di- and oligosaccharides. Optimal temperature and pH were 60 °C and 5 for CDHcc and 65-70 °C and 6 for CDHpa. Both CDHs showed a broad range of pH stability between 4 and 8. The effect of both CDHs on saccharification of micronized wheat straw by an industrial Trichoderma reesei secretome was determined. The addition of each CDH systematically decreased the release of total reducing sugars, but to different extents and according to the CDH concentration. Analytical methods were carried out to quantify the release of glucose, xylose and gluconic acid. An increase of glucose and xylose was measured at a low CDHcc concentration. At moderated and high CDHcc and CDHpa concentrations, glucose was severely reduced with a concomitant increase of gluconic acid. In conclusion, these results give new insights into the physical and chemical parameters and diversity of basidiomycetous and ascomycetous CDHs. These findings also demonstrated that CDH drastically influenced the saccharification on a natural substrate, and thus, CDH origin, concentration and potential enzymatic partners should be carefully considered in future artificial secretomes for biofuel applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-012-4355-y | DOI Listing |
Microb Cell Fact
December 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
This study explores the effect of carbohydrate-binding module 1 (CBM1) and the linker on the function of auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs), with a particular focus on monooxygenase activity, using different crystallinity celluloses and electron donors. The tested C1/C4-oxidizing AA9 LPMOs exhibited higher oxidase and peroxidase activities compared to those of the C4-oxidizing AA9 LPMOs. While the presence of CBM1 promoted cellulose-binding affinity, it reduced the oxidase activity of modular AA9 LPMOs.
View Article and Find Full Text PDFAppl Biochem Biotechnol
November 2024
Shandong Provincial Key Laboratory of Biosensors, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789, Jingshi East Road, Licheng District, Jinan, 250103, Shandong, China.
The development of an efficient lactose biosensor employing cellobiose dehydrogenases (CDHs) for monitoring and precise control of the lactose levels in dairy-based products is extremely important for the health of lactose-intolerant population. In this study, the mesophilic (Nc_CDH) and thermophilic (Ct_CDH-A, Ct_CDH-B) CDHs were successfully obtained by heterologous expression and treated with α-1,2-mannosidase and endoglycosidase H to prepare the deglycosylated forms (Nc_dCDH, Ct_dCDH-A, and Ct_dCDH-B); then, the effects of deglycosylation on the catalytic activity in solution and electrochemical performance on electrodes for lactose detection were systematically investigated. In solution, Nc_dCDH was more stable and had a higher V value and lower K value than Nc_CDH at different temperatures and pH values.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Bioresour Technol
December 2024
Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City 40227, Taiwan, ROC. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!