Schizophrenia is a severe chronic mental disorder with high genetic components in its etiology. Several studies indicated that synaptic dysfunction is involved in the pathophysiology of schizophrenia. Postsynaptic synapse-associated protein 90/postsynaptic density 95-associated proteins (SAPAPs) constitute a part of the N-methyl-d-aspartate receptor-associated postsynaptic density proteins, and are involved in synapse formation. We hypothesized that genetic variants of the SAPAPs might be associated with schizophrenia. Thus, we systemically sequenced all the exons of the discs, large (Drosophila) homolog-associated protein 1 (DLGAP1) gene that encodes SAPAP1 in a sample of 121 schizophrenic patients and 120 controls from Taiwan. We totally identified six genetic variants, including five known SNPs (rs145691437, rs3786431, rs201567254, rs3745051 and rs11662259) and one rare missense mutation (c.1922A>G) in this sample. SNP- and haplotype-based analyses showed no association of these SNPs with schizophrenia. The c.1922A>G mutation that changes the amino acid lysine to arginine at codon 641 was found in one out of 121 patients, but not in 275 control subjects, suggesting it might be a patient-specific mutation. Nevertheless, bioinformatic analysis showed this mutation does not affect the function of the DLGAP1 gene and appears to be a benign variant. Hence, its relationship with the pathogenesis remains to be investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psychres.2012.08.014 | DOI Listing |
J Dent Res
December 2024
Department of Pediatric Dentistry and Dental Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA.
Early childhood caries (ECC) is the most common noncommunicable childhood disease-an important health problem with known environmental and social/behavioral influences lacking consensus genetic risk loci. To address this knowledge gap, we conducted a genome-wide association study of ECC in a multiancestry population of U.S.
View Article and Find Full Text PDFBMC Neurol
November 2024
Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu Province, 225001, P. R. China.
Background: The role of neurons in central post-stroke pain (CPSP) following thalamic hemorrhage remains unclear. This study aimed to identify key genes associated with post-thalamic hemorrhage pain and to explore their functions in neurons. Single-nucleus RNA sequencing (snRNA-seq) data from a mouse model was used for this analysis.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
October 2024
Department of Child and Adolescent Psychology and Psychiatry, Section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.
Background: Gene-environment interaction (G × E) is likely an important influence shaping individual differences in alcohol misuse (AM), yet it has not been extensively studied in molecular genetic research. In this study, we use a series of genome-wide gene-environment interaction (GWEIS) and in silico annotation methods with the aim of improving gene identification and biological understanding of AM.
Methods: We carried out GWEIS for four AM phenotypes in the large UK Biobank sample (N = 360,314), with trauma exposure and socioeconomic status (SES) as moderators of the genetic effects.
Psychopharmacology (Berl)
January 2025
Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
FASEB J
July 2024
Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China.
Depression is a significant concern among astronauts, yet the molecular mechanisms underlying spaceflight-induced depression remain poorly understood. MicroRNAs (miRNAs) have emerged as potential regulators of neuropsychiatric disorders, including depression, but their specific role in space-induced depression remains unexplored. This study aimed to elucidate the involvement of candidate miRNAs (miR-455-3p, miR-206-3p, miR-132-3p, miR-16-5p, miR-124-3p, and miR-145-3p) and their interaction with differentially expressed genes (DEGs) in the neurobiology of spaceflight-induced depressive behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!