11β-Hydroxysteroid dehydrogenase type 1 contributes to the regulation of 7-oxysterol levels in the arterial wall through the inter-conversion of 7-ketocholesterol and 7β-hydroxycholesterol.

Biochimie

Endocrinology Unit, University/BHF Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, UK.

Published: March 2013

AI Article Synopsis

Article Abstract

The atherogenic 7-oxysterols, 7-ketocholesterol (7-KC) and 7β-hydroxycholesterol (7βOHC), can directly impair arterial function. Inter-conversion of 7-KC and 7βOHC has recently been shown as a novel role for the glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Since this enzyme is expressed in vascular smooth muscle cells, we addressed the hypothesis that inter-conversion of 7-KC and 7βOHC by 11β-HSD1 may contribute to regulation of arterial function. Incubation (4-24 h) of aortic rings with either 7-KC (25 μM) or 7βOHC (20 μM) had no effect on endothelium-dependent (acetylcholine) or -independent (sodium nitroprusside) relaxation. In contrast, exposure to 7-KC (but not to 7βOHC) attenuated noradrenaline-induced contraction (E(max)) after 4 h (0.78 ± 0.28 vs 0.40 ± 0.08 mN/mm; p < 0.05) and 24 h (2.28 ± 0.34 vs 1.56 ± 0.48 mN/mm; p < 0.05). Both 7-oxysterols were detected by GCMS in the aortic wall of chow-fed C57Bl6/J mice, with concentrations of 7-KC (1.41 ± 0.81 ng/mg) higher (p = 0.05) than 7βOHC (0.16 ± 0.06 ng/mg). In isolated mouse aortic rings 11β-HSD1 was shown to act as an oxo-reductase, inter-converting 7-KC and 7βOHC. This activity was lost in aorta from 11β-HSD1(-/-) mice, which had low oxysterol levels. Renal homogenates from 11β-HSD1(-/-) mice were used to confirm that the type 2 isozyme of 11β-HSD does not inter-convert 7-KC and 7βOHC. These results demonstrate that 7-KC has greater effects than 7βOHC on vascular function, and that 11β-HSD1 can inter-convert 7-KC and 7βOHC in the arterial wall, contributing to the regulation of 7-oxysterol levels and potentially influencing vascular function. This mechanism may be important in the cardioprotective effects of 11β-HSD1 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585959PMC
http://dx.doi.org/10.1016/j.biochi.2012.08.007DOI Listing

Publication Analysis

Top Keywords

7-kc 7βohc
12
11β-hydroxysteroid dehydrogenase
8
dehydrogenase type
8
arterial function
8
inter-conversion 7-kc
8
7-kc
5
7βohc
5
type contributes
4
contributes regulation
4
regulation 7-oxysterol
4

Similar Publications

Aim: Elevated levels of cholesterol in the bloodstream, also referred to as hypercholesterolemia, pose a significant risk for the onset of cardiovascular and cerebrovascular diseases. Oxysterols, cholesterol-derived oxidized compounds that form enzymatically or non-enzymatically, contribute to the development of atherosclerosis and coronary artery disease. This study aimed to examine the critical oxysterol levels in children and adolescents with hypercholesterolemia and explore the correlation between these levels, oxidative stress, and atherosclerosis progression.

View Article and Find Full Text PDF

7-Ketocholesterol Effects on Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells.

Int J Mol Sci

October 2024

Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil.

Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • * In this study, treating human aortic endothelial cells with 7-ketocholesterol led to an increase in miR-134-5p levels and a decrease in eNOS expression, which contributed to the dysfunction of the endothelial barrier.
  • * Knockdown of miR-134-5p improved various endothelial functions, showing its significant role in endothelial dysfunction and suggesting that this microRNA could be a potential target for future ACS diagnostics and therapies.
View Article and Find Full Text PDF

Lipidomic profiling in patients with familial hypercholesterolemia: Abnormalities in glycerolipids and oxysterols.

Clin Biochem

October 2024

Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Objectives And Aim: This study aimed to identify precise biomarkers and develop targeted therapeutic strategies for preventing premature atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia (FH) by investigating the quantitative and qualitative abnormalities in the metabolic network of lipids in these patients using an advanced lipidomics platform.

Design & Methods: The study population comprised 18 homozygous (HoFH), 18 heterozygous (HeFH) FH patients, and 20 healthy controls. Cholesterol oxidation products (oxysterol, COPs) and main lipid classes were determined using gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

UPLC-Orbitrap-HRMS application for analysis of plasma sterols.

Anal Chim Acta

April 2024

Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands. Electronic address:

Correct identification and quantification of different sterol biomarkers can be used as a first-line diagnostic approach for inherited metabolic disorders (IMD). The main drawbacks of current methodologies are related to lack of selectivity and sensitivity for some of these compounds. To address this, we developed and validated two sensitive and selective assays for quantification of six cholesterol biosynthesis pathway intermediates (total amount (free and esterified form) of 7-dehydrocholesterol (7-DHC), 8-dehydrocholesterol (8-DHC), desmosterol, lathosterol, lanosterol and cholestanol), two phytosterols (total amount (free and esterified form) of campesterol and sitosterol) and free form of two oxysterols (7-ketocholesterol (7-KC) and 3β,5α,6β-cholestane-triol (C-triol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!