Tetraspanins comprise a large family of integral membrane proteins involved in the regulation of cell adhesion, migration and fusion. In humans it consists of 33 members divided in four subfamilies. Here, we examined the spatial and temporal gene expression of four related tetraspanins during the embryonic development of Xenopus laevis by quantitative real-time PCR and in situ hybridization: Tspan3 (encoded by the gene Tm4sf8 gene) Tspan4 (encoded by the gene Tm4sf7), Tspan5 (encoded by the gene Tm4sf9) and Tspan7 (encoded by the gene Tm4sf2). These genes appeared first in the vertebrates during the evolution and are conserved across different species. In humans, they were associated with several diseases such as sclerosis, mental retardation and cancer; however their physiological role remained unclear. This work provides a comprehensive comparative analysis of the expression of these tetraspanins during the development of X. laevis. The more closely related tetraspanins Tspan3, Tspan4 and Tspan7 exhibited very similar spatial expression patterns, albeit differing in their temporal occurrence. The corresponding transcripts were found in the dorsal animal ectoderm at blastula stage. At early tailbud stages (stage 26) the genes were expressed in the migrating cranial neural crest located in the somites, developing eye, brain, and in otic vesicles. In contrast, Tspan5 appeared first at later stages of development and was detected prominently in the notochord. These data support close relatedness of Tspan3, Tspan4 and Tspan7. The expression of these tetraspanins in the cells with a high migratory potential, e.g. neural crest cells, suggests their role in the regulation of migration processes, characteristic for tetraspanin family members, during development. Similarity of the expression profiles might indicate at least partial functional redundancy, which is in concordance with earlier findings of tissue-limited or absent phenotypes in the knock-down studies of tetraspanins family members performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gep.2012.08.001 | DOI Listing |
EJNMMI Res
December 2024
μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium.
Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.
View Article and Find Full Text PDFFolia Microbiol (Praha)
December 2024
Federal Research Center "Pushchino Scientific Center for Biological Research", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russian Federation.
Cells of the methylotrophic yeast Ogataea parapolymorpha have two genes encoding low-affinity phosphate transporters: PHO87, encoding the plasma membrane transporter, and PHO91, encoding a protein, which is homologous to the Saccharomyces cerevisiae vacuolar membrane transporter. Earlier, we reported that inactivation of PHO91 in O. parapolymorpha interferes with methanol utilization due to the lack of activity of methanol oxidase encoded by the MOX gene.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
Plant natural products are crucial in defending against herbivorous insects and are widely used in pest control, yet their mechanisms remain complex and insufficiently studied. This study employed a reverse strategy to investigate the mechanism of camptothecin (CPT), a botanical pesticide. By using a CPT-based chemical probe coupled with proteomic analysis, immune-related proteins, including those involved in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) synthesis, were identified in the Asian corn borer, .
View Article and Find Full Text PDFVet Sci
December 2024
College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
African swine fever (ASF) has widely spread around the world in the last 100 years since its discovery. The African swine fever virus (ASFV) particles are made of more than 150 proteins, with the p17 protein encoded by the D117L gene serving as one of the major capsid proteins and playing a crucial role in the virus's morphogenesis and immune evasion. Thus, monoclonal antibody (mAb) targeting p17 is important for the research and detection of ASFV infection.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic , primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by ) in HUS has not yet been investigated. We hypothesized that HO-1 also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!