The purpose of this study was to investigate the roles of endothelium-derived factors in the retinal arteriolar responses to acute severe elevation in systemic blood pressure (BP) in cats. Acute elevation of mean arterial BP by 60% for 5 min was achieved by inflating a balloon-tipped catheter in the descending aorta. The retinal arteriolar diameter, flow velocity, wall shear rate (WSR) and blood flow (RBF) changes during BP elevation were assessed with laser Doppler velocimetry 2 h after intravitreal injections of nitric oxide (NO) synthase inhibitor l-NAME, cyclooxygenase inhibitor indomethacin, endothelin-1 receptor antagonists (BQ-123 for type A and BQ-788 for type B), or Rho kinase inhibitor fasudil. BP elevation caused a marked increase in retinal arteriolar flow velocity and WSR with slight vasoconstriction, resulting in an increase in RBF. The increases in velocity, WSR and RBF, but not diameter, were correlated with the increase in ocular perfusion pressure. With l-NAME or indomethacin, the increase in RBF upon BP elevation was significantly attenuated due to enhanced retinal arteriolar vasoconstriction. In contrast, BQ-123 and fasudil potentiated the increased RBF. BQ-788 had no effect on arteriolar diameter and hemodynamics. Our data suggest that acute elevation of BP by 60% leads to an increase in RBF due to the release of NO and prostanoids probably through a shear stress-induced vasodilation mechanism. The release of endothelin-1 and Rho kinase activation help to limit RBF augmentation by counteracting the vasodilation. It appears that the retinal endothelium, by releasing vasoactive substances, contributes to RBF regulation during acute severe elevation of systemic blood pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2012.08.007DOI Listing

Publication Analysis

Top Keywords

retinal arteriolar
20
acute severe
12
severe elevation
12
elevation systemic
12
systemic blood
12
blood pressure
12
increase rbf
12
arteriolar responses
8
responses acute
8
elevation
8

Similar Publications

Posterior segment findings in a patient with a biallelic pathogenic variant.

Am J Ophthalmol Case Rep

December 2024

Genomic Laboratory, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.

Purpose: To report the posterior segment findings in a case with a biallelic frameshift pathogenic variant at chromosome 10 c.616del exon7 p.(His206Thrfs∗61).

View Article and Find Full Text PDF

Association of retinal microvascular abnormalities with all-cause and specific-cause mortality among U.S. adults.

BMC Public Health

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.

Background: Retinal microvascular abnormalities (RMA) reflect cumulative microvascular damage from systemic diseases and aging. However, little is known about the association between RMA and long-term survival outcomes. This study aimed to examine the relationships between RMA and the risk of all-cause and specific-cause mortality among U.

View Article and Find Full Text PDF

Retinal microvascular dysfunction in systemic sclerosis.

Microvasc Res

December 2024

Department of Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland; Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:

Background And Aims: Systemic sclerosis (SSc) is a systemic autoimmune disease, characterized by widespread microvasculopathy and fibrosis. Vascular and endothelial cell changes appear to precede other features of SSc. Retinal vascular analysis is a new, easy-to-use tool for the assessment of retinal microvascular function.

View Article and Find Full Text PDF

Purpose: To investigate local hemodynamic changes resulting from elevated intraocular pressure (IOP) in different vasculature networks using a computational fluid dynamics model based on 3D reconstructed confocal microscopic images.

Methods: Three-dimensional rat retinal vasculature was reconstructed from confocal microscopy images using a 3D U-Net-based labeling technique, followed by manual correction. We conducted a computational fluid dynamics (CFD) analysis on different retinal vasculature networks derived from a single rat.

View Article and Find Full Text PDF

Context: Exogenous insulin is reported to have both vasodilatory and vasoconstrictive effects on the microvasculature. Little is known about the associations of long-term endogenous insulin exposure with microvasculature.

Objective: To test the hypothesis that long-term exposure to high insulin levels in childhood and adulthood is associated with adverse changes in retinal microvasculature in adulthood in a population without diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!