Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology.

Bioresour Technol

Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7.

Published: November 2012

Hydrogen production from glucose via single-stage photofermentation was examined with the photosynthetic bacterium Rhodobacter capsulatus JP91 (hup-). Response surface methodology with Box-Behnken design was used to optimize the independent experimental variables of glucose concentration, glutamate concentration and light intensity, as well as examining their interactive effects for maximization of molar hydrogen yield. Under optimal condition with a light intensity of 175W/m(2), 35mM glucose, and 4.5mM glutamate, a maximum hydrogen yield of 5.5 (±0.15)molH(2)/molglucose, and a maximum nitrogenase activity of 246 (±3.5)nmolC(2)H(4)/ml/min were obtained. Densitometric analysis of nitrogenase Fe-protein expression under different conditions showed significant variation in Fe-protein expression with a maximum at the optimized central point. Even under optimum conditions for hydrogen production, a significant fraction of the Fe-protein was found in the ADP-ribosylated state, suggesting that further improvement in yields might be possible.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.07.061DOI Listing

Publication Analysis

Top Keywords

hydrogen yield
12
single-stage photofermentation
8
rhodobacter capsulatus
8
capsulatus jp91
8
response surface
8
surface methodology
8
hydrogen production
8
light intensity
8
fe-protein expression
8
optimization hydrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!