Evidence for water-permeable channels in auditory hair cells in the leopard frog.

Hear Res

Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90995-1624, USA.

Published: October 2012

Auditory hair cells in the amphibian papilla (APHCs) of the leopard frog, Rana pipiens pipiens, have a significantly higher permeability to water than that observed in mammalian hair cells. The insensitivity of water permeability in frog hair cells to extracellular mercury suggests that an amphibian homologue of the water channel aquaporin-4 (AQP4) may mediate water transport in these cells. Using immunocytochemistry, we show that an AQP4-like protein is found in APHCs. Rabbit anti-AQP4 antibody was used in multiple-immunohistochemical staining experiments along with AP hair cell and hair bundle markers in leopard frog and mouse tissue. AQP4 immunoreactivity was found in the basal and apical poles of the APHCs and shows uniform immunoreactivity. This study provides the first identification and localization of an AQP4-like protein in the amphibian inner ear. We also report a more direct measure of hyperosmotically-induced volume changes in APHCs that confirms previous findings. The presence of water channels in anuran APHCs constitutes a novel physiological difference between amphibian and mammalian hair cell structure and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3455137PMC
http://dx.doi.org/10.1016/j.heares.2012.08.004DOI Listing

Publication Analysis

Top Keywords

hair cells
16
leopard frog
12
auditory hair
8
mammalian hair
8
aqp4-like protein
8
hair cell
8
hair
7
cells
5
aphcs
5
water
5

Similar Publications

We previously demonstrated that C-X-C Motif Chemokine Ligand 12 (CXCL12) is primarily secreted by dermal fibroblasts in response to androgens and induces hair miniaturization in the mouse androgenic alopecia (AGA) model. However, the direct effects of androgen-induced CXCL12 on dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs) have not been demonstrated. First, we compared single-cell RNA sequencing data between mouse and human skin, and the results show that CXCL12 is highly co-expressed with the androgen receptor (AR) in the DPCs and DSCs of only human hair.

View Article and Find Full Text PDF

The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells.

View Article and Find Full Text PDF

The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI).

View Article and Find Full Text PDF

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.

View Article and Find Full Text PDF

Deciphering compromised speech-in-noise intelligibility in older listeners: the role of cochlear synaptopathy.

eNeuro

January 2025

Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Technologiepark 216, 9052 Zwijnaarde, Belgium

Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!