Objective: Actinomyces naeslundii, plays an important role in forming dental biofilms and causes gingival inflammation. Although peptidoglycan, the major cell wall component of Gram-positive bacteria, has been demonstrated to induce inflammatory cytokines, little is known about the association of peptidoglycan with alveolar bone resorption. This study investigated the involvement of peptidoglycan from A. naeslundii in osteoclast formation and bone resorption.

Design: Osteoclast formation and function induced by peptidoglycan of A. naeslundii T14V were examined using the co-culture system of MCTC3/PA6 cells and BALB/c mouse bone marrow cells. Osteoclast formation was evaluated to count TRAP-positive multi-nuclei cells as osteoclasts. The function of osteoclasts was assessed by measuring the areas of pits absorbed. Inflammatory cytokine genes expressions, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, were examined by RT-PCR analysis using murine peritoneal macrophages. Experimental periodontitis was performed in Sprague-Dawley rats orally infected with A. naeslundii.

Results: TRAP-positive multi-nuclei cells and the areas of pits induced by peptidoglycan were significantly greater than controls (p<0.01). Gene expression levels of IL-1β, IL-6, and TNF-α induced by A. naeslundii PGN were stronger than controls. In experimental periodontitis, bone loss of A. naeslundii-infected rats was comparable to that of rats induced by Porphyromonas gingivalis, which has been reported to be a periodontal pathogenic agent, being significantly greater than that of the sham group (p<0.01).

Conclusions: These results suggest that peptidoglycan of A. naeslundii is an important virulence factor in the development of periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.archoralbio.2012.07.012DOI Listing

Publication Analysis

Top Keywords

osteoclast formation
12
actinomyces naeslundii
8
inflammatory cytokine
8
alveolar bone
8
bone resorption
8
peptidoglycan naeslundii
8
induced peptidoglycan
8
trap-positive multi-nuclei
8
multi-nuclei cells
8
areas pits
8

Similar Publications

Although the toxic effect of Sedentary behavior (SED) on bone health has been demonstrated in the previous study, the underlying mechanisms of SED, or break SED to bone health remain unclear. In this study, we aim to investigate the effects of sedentary behavior (SED) on bone health, as well as the potential favor effects of moderate to vigorous physical activity (MVPA) and periodic interruptions of SED. To simulate SED, we used small Plexiglas cages (20.

View Article and Find Full Text PDF

This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.

View Article and Find Full Text PDF

Ligustilide, a phthalide compound extracted from Umbelliferae plants such as Angelica sinensis and Ligusticum chuanxiong, has been proven to possess various pharmacological activities, such as anti-inflammatory, anti-tumor, anti-atherosclerosis, anti-ischemic stroke injury, and anti-Alzheimer's disease properties. In recent years, it has shown great potential, particularly in the treatment of locomotor system diseases. Studies have shown that ligustilide has significant therapeutic effects on various locomotor system diseases, including osteoporosis, osteoarthritis, femoral head necrosis, osteosarcoma, and muscle aging and injury.

View Article and Find Full Text PDF

Objectives: Hydroxyapatite (HAp)/collagen (Col) cylinders with laminated collagen layers were implanted into the tibial diaphysis of rats and examined histochemically to clarify how the orientation of HAp and Col bone-like nanocomposite fibers in HAp/Col blocks affects bone resorption and formation.

Methods: HAp/Col fibers were synthesized and compressed into cylindrical blocks to mimic bone nanostructures. These were implanted into the cortical bone cavities of 10-week-old male Wistar rats with fiber bundles parallel to the tibial surface.

View Article and Find Full Text PDF

The bone is a highly dynamic organ that undergoes continuous remodeling through an intricate balance of bone formation and degradation. Hyperactivation of the bone-degrading cells, the osteoclasts (OCs), occurs in disease conditions and hormonal changes in females, resulting in osteoporosis, a disease characterized by altered microarchitecture of the bone tissue, and increased bone fragility. Thus, building robust assays to quantify OC resorptive activity to examine the molecular mechanisms underlying bone degradation is critical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!