The main objective of the present work was to prepare warfarin-β-cyclodextrin (WAF-β-CD) loaded chitosan (CS) nanoparticles for transdermal delivery. CS is a hydrophilic carrier therefore, to overcome the hydrophobic nature of WAF and allow its incorporation into CS nanoparticles, WAF was first complexed with β-cyclodextrin (β-CD). CS nanoparticles were prepared by ionotropic pre-gelation using tripolyphosphate (TPP). Morphology, size and structure characterization of nanoparticles were carried out using SEM, TEM and FTIR, respectively. Nanoparticles prepared with 3:1 CS:TPP weight ratio and 2mg/ml final CS concentration were found optimum. They possessed spherical particles (35±12nm diameter) with narrow size distribution (PDI=0.364) and 94% entrapment efficiency. The in vitro release as well as the ex vivo permeation profiles of WAF-β-CD from the selected nanoparticle formulation were studied at different time intervals up to 8h. In vitro release of WAF-β-CD from CS nanoparticles followed a Higuchi release profile whereas its ex vivo permeation (at pH 7.4) followed a zero order permeation profile. Results suggested that the developed WAF-β-CD loaded CS carrier could offer a controlled and constant delivery of WAF transdermally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2012.06.056 | DOI Listing |
Curr Pharm Des
January 2025
Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods.
View Article and Find Full Text PDFLangmuir
January 2025
Surface Science and Bio-nanomaterials Laboratory, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada.
3D printing techniques are increasingly being explored to produce hydrogels, versatile materials with a wide range of applications. While photopolymerization-based 3D printing can produce customized hydrogel shapes and intricate structures, its reliance on rigid printing conditions limits material properties compared to those of extrusion printing. To address this limitation, this study employed an alternative approach by printing an organogel precursor using vat polymerization with organic solvents instead of water, followed by solvent exchange after printing to create the final hydrogel material.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Bovine mastitis is the most widespread disease that causes financial loss in the dairy industry. Staphylococcus aureus is a well-researched multidrug-resistant opportunistic bacterium that is frequently linked to subclinical mastitis and causes significant economic losses. A further problem in the management of S.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute , National Research Centre, Dokki, Cairo, 12622, Egypt.
Cisplatin is a chemotherapeutic drug, which exhibits undesirable side effects. Chitosan nanoparticles are promising for drug delivery. The aim of this study was to determine the effect of the brown alga Turbinaria triquetra ethyl acetate fraction and polysaccharides, either loaded on chitosan nanoparticles or free, against podocyturia and cisplatin nephrotoxicity in rats.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:
Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!