Ultrasound-enhanced monoclonal antibody production.

Ultrasound Med Biol

Department of Laboratory Medicine and Pathology, University of Alberta, Canada.

Published: November 2012

With the rapidly growing demand for monoclonal antibody (mAb)-based products, new technologies are urgently needed to increase mAb production while reducing manufacturing costs. To solve this problem, we report our research findings of using low-intensity pulsed ultrasound (LIPUS) to enhance mAb production. LIPUS with frequency of 1.5 MHz and pulse repetition frequency of 1 kHz, as well as duty cycle of 20%, was used to stimulate hybridoma cells to enhance the production of mAb, anti-CD4 (hybridoma GK1.5). The enzyme-linked immunosorbent assay results show a 60.42 ± 7.63% increase of mAb expression in hybridoma cells. The evidence of structural changes of the cellular outer membrane in both transmission electron microscopy and scanning electron microscopy images and the more than 20% lactate dehydrogenase release indicates that the increased mAb production is related to the increased cell permeability induced by LIPUS. This value-added ultrasound technology provides a potential cost-effective solution for pharmaceutical companies to manufacture mAb-based drugs. The technology, in turn, can reduce the drug manufacturing costs and decrease health care spending.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2012.06.008DOI Listing

Publication Analysis

Top Keywords

mab production
12
monoclonal antibody
8
increase mab
8
manufacturing costs
8
hybridoma cells
8
electron microscopy
8
production
5
mab
5
ultrasound-enhanced monoclonal
4
antibody production
4

Similar Publications

Plant cross-fertilization for production of dual-specific antibodies targeting both Ebola virus-like particles and HER2 protein in F plants.

Genes Genomics

January 2025

Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea.

Background: This study explores the cross-fertilization of transgenic tobacco plants to produce dual-specific monoclonal antibodies (mAbs) targeting Ebola virus-like particles and HER2 proteins. We generated F plants by hybridizing individual transgenic lines expressing the anti-HER2 breast cancer VHH mAb (HV) and the H-13F6 human anti-Ebola large single chain mAb (EL).

Objective: Hybridizing transgenic plants to express dual-antibodies between different structures VHH and LSCK indicate the potential of transgenic plants as a cost-effective and scalable production system for dual targeting mAbs.

View Article and Find Full Text PDF

A nucleocapsid monoclonal antibody based sandwich ELISA for the general detection of both PRRSV-2 and PRRSV-1.

Vet Microbiol

January 2025

College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. Electronic address:

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in growing pigs, leading to significant economic losses worldwide. Due to the constant mutation and recombination, PRRSV exhibits significant genetic diversity, the general detection of all PRRSV-2 and PRRSV-1 strains is thus needed. In our study, four monoclonal antibodies (mAbs) against PRRSV nucleocapsid (N) protein were generated and the precise and novel B cell epitopes (KPHF and HHTVR) were identified.

View Article and Find Full Text PDF

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

Platforms have long been implemented for downstream process development of monoclonal antibodies (mAbs) to streamline development and reduce timelines. These platforms are also increasingly being used for other complex biologics modalities. While development has traditionally been conducted at the lab bench scale in a sequential manner, automated miniaturized and parallelized approaches like RoboColumns and resin plates have also been implemented for chromatographic screening.

View Article and Find Full Text PDF

A design space for the filtration of challenging monoclonal antibodies using Planova™ S20N, a new regenerated cellulose virus removal filter.

Biotechnol Prog

January 2025

Biologics Technology Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd, Oura-gun, Gunma, Japan.

Virus removal by filtration is a crucial step in ensuring the safety of therapeutic antibodies and other biopharmaceutical products by mitigating the risk of endogenous and adventitious viral contamination. However, there are monoclonal antibodies (mAb) that are difficult to filter effectively using virus removal filters (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!