Both gaseous bromine and bromine chloride have been monitored in polar environments and implicated in the destruction of tropospheric ozone. The formation mechanisms operating for these halogen compounds have been suggested previously. However, few laboratory studies have been performed using environmentally relevant concentrations of bromide and chloride ions in polar ice mimics. In aqueous solutions held at room temperature, previous studies have shown that the major product is the Cl(2)Br¯ trihalide ion when solutions of bromate, hydrochloric acid, and bromide ions are left to equilibrate. In contrast, the results of the cryochemical experiments presented here suggest that the dibromochloride ion (BrBrCl¯) is the major product when solutions of bromate, sulfuric acid, bromide, and chloride ions are frozen. Such a species would preferentially release bromine to the gas phase. Hence, similar halide starting materials form structurally different trihalide ions when frozen, which are capable of releasing differing active halogens, BrCl and Br(2), to the gas-phase. This is a potentially important finding because Br(2) is photolyzed more readily and to longer wavelengths than BrCl and therefore the efficiency in forming products that can lead to ozone destruction in the atmosphere would be increased. Evidence is provided for the mechanism to occur by means of both the freeze-concentration effect and the incorporation of ions into the growing ice phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es301988sDOI Listing

Publication Analysis

Top Keywords

ion solutions
8
bromide chloride
8
chloride ions
8
major product
8
solutions bromate
8
acid bromide
8
ions frozen
8
ions
5
freeze-induced formation
4
formation bromine/chlorine
4

Similar Publications

We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive Na ( = 3/2), K ( = 3/2), and Rb ( = 3/2) NMR results from alkali metal ions (Na, K, and Rb) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal.

View Article and Find Full Text PDF

The highly anisotropic and nonadditive nature of nanoparticle surfaces restricts their characterization by limited types of techniques that can reach atomic or molecular resolution. While small-angle neutron scattering (SANS) is a unique tool for analyzing complex systems, it has been traditionally considered a low-resolution method due to its limited scattering vector range and wide wavelength spread. In this article, we present a novel perspective on SANS by showcasing its exceptional capability to provide molecular-level insights into nanoparticle interfaces.

View Article and Find Full Text PDF

Removal of lithium from aqueous solutions by precipitation with sodium and choline alkanoate soaps.

Green Chem

December 2024

KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Leuven Belgium

In order to comply with the expected tightening of discharge limits for lithium to surface waters, the lithium-ion battery industry will need access to methods to reduce the concentration of lithium in wastewater down to ppm levels. In this Communication, we discuss the possibility of using sodium and choline soaps as precipitating agents for lithium, comparing the two soap classes and probing the influence of the carbon chain length. It was found that lithium concentrations down to 10 ppm can be reached with sodium stearate, and down to 1 ppm with choline stearate, using a slight excess of the precipitating agent.

View Article and Find Full Text PDF

In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.

View Article and Find Full Text PDF

A novel silica-based material (SBM), synthesized from chemically-, thermally-, and mechanically-treated blast furnace slag (TBFS), was examined for its batch-mode lead adsorption capacity based on various parameters. Physicochemical examinations revealed that the formulation of the new SBM consisted mainly of silica, which represented 81.79% of its total composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!