Hypoxia-inducible factor-1 (HIF-1) regulates the expression of hypoxia-inducible genes by binding erythropoietin (EPO) enhancer fragments. Of these genes, HIF-1 upregulates voltage-gated K+1.2 channels (Kv1.2) in rat PC12 cells. Whether HIF-1 regulates hypoxia-induced Kv channel expression in cultured pulmonary artery smooth muscle cells (PASMCs), however, has not been determined. In this study, we investigated the effects of hypoxia on the expression of Kv1.2 Kv1.5, Kv2.1, and Kv9.3 channels in PASMCs and examined the direct role of HIF-1 by transfecting either wild type or mutant EPO enhancer fragments. Our results showed that 18 h exposure to hypoxia significantly increased the expression of Kv1.2, Kv1.5, Kv2.1, and Kv9.3; and this hypoxia-induced upregulation was completely inhibited after transfection with the wild type but not mutant EPO enhancer fragment. These results indicate that HIF-1 regulates hypoxia-stimulated induction of Kv1.2 Kv1.5, Kv2.1, and Kv9.3 channels in cultured PASMCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362424 | PMC |
http://dx.doi.org/10.17305/bjbms.2012.2463 | DOI Listing |
Unlabelled: The Sarm1 NAD hydrolase drives neurodegeneration in many contexts, but how Sarm1 activity is regulated remains poorly defined. Using CRISPR/Cas9 screening, we found loss of VHL suppressed Sarm1-mediated cellular degeneration. VHL normally promotes O -dependent constitutive ubiquitination and degradation of hypoxia-inducible factor 1 (HIF-1), but during hypoxia, HIF-1 is stabilized and regulates gene expression.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
() has caused huge economic losses to the cattle industry. The interaction between and host cells is elucidated by screening and identifying the target protein of adhesin on the surface of the host cell membrane. However, the response mechanism of embryonic bovine lung (EBL) cells to infection is not yet fully understood.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.
View Article and Find Full Text PDFGenes (Basel)
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.
View Article and Find Full Text PDFBiomolecules
December 2024
Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea.
Metastatic cancer accounts for most cancer-related deaths, and identifying specific molecular targets that contribute to metastatic progression is crucial for the development of effective treatments. Hypoxia, a feature of solid tumors, plays a role in cancer progression by inducing resistance to therapy and accelerating metastasis. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) transcriptionally regulates () and thus promotes migration and invasion of non-small-cell lung cancer (NSCLC) cells under hypoxic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!