Targeting wild-type Erythrocyte receptors for Plasmodium falciparum and vivax Merozoites by Zinc Finger Nucleases In- silico: Towards a Genetic Vaccine against Malaria.

Genet Vaccines Ther

Dept of Medical Microbiology, School of Biomedical Science, College of Health Sciences, Makerere University, P O Box 7072, Kampala, Uganda.

Published: August 2012

Background: Malaria causes immense human morbidity and mortality globally. The plasmodium species vivax and falciparum cause over 75 % clinical malaria cases. Until now, gene-based strategies against malaria have only been applied to plasmodium species and their mosquito-vector. Merozoites of these two respective plasmodium species target and invade red blood cells (RBCs) by using the duffy antigen receptor for chemokines (DARC), and Sialic Acid (SLC4A1) residues of the O-linked glycans of Glycophorin A. RBCs of naturally selected duffy-negative blacks are resistant to P.vivax tropism. We hypothesized that artificial aberration of the host-pathway by target mutagenesis of either RBC -receptors, may abolish or reduce susceptibility of the host to malaria. As a first step towards the experimental actualization of these concepts, we aimed to identify zinc finger arrays (ZFAs) for constructing ZFNs that target genes of either wild-type host-RBC- receptors.

Methods: In-Silico Gene & Genome Informatics

Results: Using the genomic contextual nucleotide-sequences of homo-sapiens darc and glycophorin-a, and the ZFN-consortia software- CoDA-ZiFiT-ZFA and CoDA-ZiFiT-ZFN: we identified 163 and over 1,000 single zinc finger arrays (sZFAs) that bind sequences within the genes for the two respective RBC-receptors. Second, 2 and 18 paired zinc finger arrays (pZFAs) that are precursors for zinc finger nucleases (ZFNs) capable of cleaving the genes for darc and glycophorin-a were respectively assembled. Third, a mega-BLAST evaluation of the genome-wide cleavage specificity of this set of ZFNs was done, revealing alternate homologous nucleotide targets in the human genome other than darc or glycophorin A.

Conclusions: ZFNs engineered with these ZFA-precursors--with further optimization to enhance their specificity to only darc and glycophorin-a, could be used in constructing an experimental gene-based-malaria vaccine. Alternatively, meganucleases and transcription activator-like (TAL) nucleases that target conserved stretches of darc and glycophorin-a DNA may serve the purpose of abrogating invasion of RBCs by falciparam and vivax plasmodia species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500210PMC
http://dx.doi.org/10.1186/1479-0556-10-8DOI Listing

Publication Analysis

Top Keywords

zinc finger
20
darc glycophorin-a
16
plasmodium species
12
finger arrays
12
finger nucleases
8
darc
6
zinc
5
finger
5
malaria
5
targeting wild-type
4

Similar Publications

ZDHHC2 promoted antimycobacterial responses by selective autophagic degradation of B-RAF and C-RAF in macrophages.

Sci Adv

January 2025

Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.

S-Palmitoylation is a reversible post-translational modification involving saturated fatty acid palmitate-to-cysteine linkage in the protein, which guides many aspects of macrophage physiology in health and disease. However, the precise role and underlying mechanisms of palmitoylation in infection of macrophages remain elusive. Here, we found that infection induced the expression of zinc-finger DHHC domain-type palmitoyl-transferases (ZDHHCs), particularly ZDHHC2, in mouse macrophages.

View Article and Find Full Text PDF

Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.

View Article and Find Full Text PDF

Elegant and Innovative Recoding Strategies for Advancing Vaccine Development.

Vaccines (Basel)

January 2025

Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.

Recoding strategies have emerged as a promising approach for developing safer and more effective vaccines by altering the genetic structure of microorganisms, such as viruses, without changing their proteins. This method enhances vaccine safety and efficacy while minimizing the risk of reversion to virulence. Recoding enhances the frequency of CpG dinucleotides, which in turn activates immune responses and ensures a strong attenuation of the pathogens.

View Article and Find Full Text PDF

Background/objectives: ZNF711(Zinc finger protein 711) encodes a zinc finger protein of currently undefined function, located on the X chromosome. Current knowledge includes a limited number of case reports where this gene has been exclusively associated with X-linked intellectual disability (XLID). As far as we are aware, we report the first cases of epilepsy associated with this particular variant.

View Article and Find Full Text PDF

Recent advances in molecular genetics, particularly in identifying and characterizing genetic abnormalities within mesenchymal neoplasms, have led to a more comprehensive and evolving classification system. Modern technological developments in cytogenetics and next-generation sequencing have enabled the analysis of small clinical samples, expanded our understanding of tumor biology, and improved the diagnostic, prognostic, and predictive precision by identifying targeted genetic alterations, confirming the presence of fusion transcripts, and/or revealing the overexpression of specific genes and their targets. In this review, we focus specifically on the -rearranged enteric tumor, a recent clinicopathological entity that has emerged within the expanding classification of mesenchymal tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!