The electronic spectrum of the CUO molecule was investigated with the IHFSCC-SD (intermediate Hamiltonian Fock-space coupled cluster with singles and doubles) method and with TD-DFT (time-dependent density functional theory) employing the PBE and PBE0 exchange-correlation functionals. The importance of both spin-orbit coupling and correlation effects on the low-lying excited-states of this molecule are analyzed and discussed. Noble gas matrix effects on the energy ordering and vibrational frequencies of the lowest electronic states of the CUO molecule were investigated with density functional theory (DFT) and TD-DFT in a supermolecular as well as a frozen density embedding (FDE) subsystem approach. This data is used to test the suitability of the FDE approach to model the influence of different matrices on the vertical electronic transitions of this molecule. The most suitable potential was chosen to perform relativistic wave function theory in density functional theory calculations to study the vertical electronic spectra of the CUO and CUONg(4) with the IHFSCC-SD method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4742765 | DOI Listing |
Molecules
January 2025
Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Many biologically active compounds have been identified in the mucus of the garden snail , which are effective in the treatment of several diseases such as cancer, ulcers, wounds, etc. The incorporation of these compounds into the green synthesis of copper nanoparticles (CuONPs-Muc) was demonstrated in our previous study. Based on the synergistic effect of two reducing agents- snail mucus and ascorbic acid (AsA)-on CuSO.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.
View Article and Find Full Text PDFMolecules
January 2025
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
Dopamine (DA) is an important catecholamine neurotransmitter and its abnormal concentration is closely related to diseases such as hypertension, Parkinson's disease and schizophrenia. Due to the advantages of high sensitivity and fast response for electrochemiluminescence (ECL), developing ECL sensors for detecting DA was very critical in clinical diagnosis. ECL resonance energy transfer (ECL-RET) was an effective signaling mechanism.
View Article and Find Full Text PDFMolecules
December 2024
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa.
The demand for reliable, cost-effective, room temperature gas sensors with high sensitivity, selectivity, and short response times is rising, particularly for environmental monitoring, biomedicine, and agriculture. In this study, corncob waste-derived activated carbon (ACC) was combined with CuO nanoparticles and polyvinyl alcohol (PVA) to fabricate ACC/PVA/CuO composites with CuO loadings of 5, 10, and 15 wt.%.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!