Purpose: The aim of this study was to evaluate the Knoop microhardness and microshear bond strength (MSBS) of dual-cured luting systems and flowable resin bonded to leucite-reinforced ceramics and enamel.
Materials And Methods: Eighty bovine incisors were randomly divided into four groups per test (microhardness and microshear; n = 10) according to the bonding procedure: Excite DSC/Variolink, Clearfil SE Bond/Panavia F, Adper Scotchbond Multi-Purpose Plus/RelyX ARC, and Adper Single Bond 2/Filtek Z350 Flow. For the KHN measurement, the cement was applied on the enamel surface and light-cured through a ceramic disk (5 mm diameter × 1.2 mm thick). Five indentations were performed in each specimen and measured at HMV-2. For the microshear test, two cylinders of a leucite-reinforced ceramic (1 mm diameter × 2 mm height) were bonded to the enamel substrate in accordance with the bonding procedures previously established. One cylinder was tested 24 hours after cementation, and the other was subjected to thermocycling (2000 cycles) and then submitted to an MSBS test. The data from the hardness and bond strength tests were subjected to one- and two-way repeated-measures analysis of variance (ANOVA), respectively, and to Tukey's test (α= 0.05).
Results: Scotchbond/RelyX ARC presented higher values of bond strength, while Single Bond/Z350 Flow showed lower values. The thermocycling promoted a reduction in the bond strength values for all groups. Panavia F presented higher values of KHN, and the flowable resin presented the lowest. RelyX ARC and Variolink presented intermediate values on hardness evaluation.
Conclusions: For ceramic cementation, dual-cured resin luting systems promoted more reliable bonding and microhardness values than the flowable resin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1532-849X.2012.00898.x | DOI Listing |
Dent J (Basel)
January 2025
Department of Restorative Dentistry, Faculty of Dentistry, Yeditepe University, İstanbul 34728, Turkey.
This study aimed to investigate the microtensile bond strength (µTBS) of composite-based (Cerasmart), polymer-infiltrated (Vita Enamic), and feldspathic (Cerec) CAD/CAM blocks luted to dentin using a dual-cure resin cement (LinkForce), as well as micro-hybrid (G-aenial) and flowable composites (G-aenial Universal Flo), and evaluate the microhardness (HV) of luting materials through the CAD/CAM blocks. Cerasmart, Enamic, and Cerec were luted to dentin using three luting materials; LinkForce, G-aenial, and Universal Flo (n = 5). For HV, 117 disk-shaped specimens from LinkForce, G-aenial, and Universal Flo (n = 13) were polymerized through 3 mm thick CAD/CAM.
View Article and Find Full Text PDFDent J (Basel)
January 2025
Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
: The success of treatment and prevention for secondary caries hinges significantly on the techniques employed in Class II composite restoration. Additionally, the location of the restored tooth within the oral cavity has emerged as a potential factor determining the quality of the restoration. A comprehensive understanding of these interrelated variables is crucial for advancing the efficacy and durability of dental composite restorations.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Department of Life, Health and Environmental Sciences, Postgraduate School of Orthodontics, University of L'Aquila, 67100 L'Aquila, Italy.
The injection moulding technique (IMT) is a minimally invasive restorative treatment. This technique enables the application of thin, flowable composite layers into a stable, transparent silicone index that serves as a mould. Due to the fluid properties of the composite, it efficiently fills the silicone tray and seamlessly integrates with the tooth structure, often obviating tooth preparation and preserving overall tooth integrity.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy Iasi, Str. Universitatii No. 16, 700115 Iasi, Romania.
: The aim of this study was to evaluate the influence of acidic beverages on the mechanical properties of various dental resin-based materials. : A total number of 160 samples were prepared using four types of resin-based materials-Group A ( = 40): flowable composite, Group B ( = 40): heavy-flow composite, Group C ( = 40): resin-based sealant and Group D ( = 40): nano-hybrid composite. Then, the samples were distributed into four subgroups according to the submersion solution: ( = 10): artificial saliva, ( = 10): coffee, ( = 10): cola and ( = 10): red wine.
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Professor, Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil. Electronic address:
Statement Of Problem: Staining at the gingival margin could impact denture longevity, but the behavior of gingival colored composite resins (GCCs) in this area remains unclear.
Purpose: This in vitro study evaluated surface staining, microleakage, and push-out bond strength at the gingival margin of artificial teeth, comparing two consistencies of GCCs with two resin base materials.
Material And Methods: Specimens included artificial teeth (Ivostar; Ivoclar AG) and two acrylic resin base materials: conventional (Ondacryl; Clássico) and high-impact (Diamond D; Keystone Industries) (n=300).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!