Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The use of mechanical cardiopulmonary resuscitation (CPR) has great potential for the clinical setting. The purpose of present study is to compare the hemodynamics and ventilation during and after the load-distributing band CPR, versus the manual CPR in a porcine model of prolonged cardiac arrest, and to investigate the influence of rescue breathing in different CPR protocols.
Methods: Sixty-four male pigs (n = 16/group), weighing 30 ± 2 kg, were induced ventricular fibrillation and randomized into four resuscitation groups: continuous load-distributing band CPR without rescue ventilation (C-CPR), load-distributing band 30:2 CPR (A-CPR), load-distributing band CPR with continuous rescue breathing (10/min) (V-CPR) or manual 30:2 CPR (M-CPR). Respiratory variables and hemodynamics were recorded continuously; blood gas was analyzed.
Results: Tidal volume produced by compressions in the A-, C- and V-CPR groups were significantly higher compared with the M-CPR group (all p < 0.05). Coronary perfusion pressure of the V-CPR group was significantly lower than the C-CPR group (p < 0.01), but higher than the M-CPR group. The increasing of lung dead space after restoration of spontaneous circulation was significantly greater in the M-CPR group compared with the A-, C- and V-CPR groups (p < 0.01). Blood pH gradually decreased and was lower in the M-CPR group than that in the A-, C- and V-CPR groups (p < 0.01). PaO2 of the A-, C- and V-CPR groups were significantly higher and PaCO2 were significantly lower compared with the M-CPR (both p < 0.05). Cerebral performance categories were better in the A-, C- and V-CPR groups compared with the M-CPR group (p < 0.0001).
Conclusions: The load-distributing band CPR significantly improved respiratory parameters during resuscitation by augmenting passive ventilation, and significantly improved coronary perfusion pressure. The volume of ventilation produced by the load-distributing band CPR was adequate to maintain sufficient gas exchange independent of rescue breathing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492085 | PMC |
http://dx.doi.org/10.1186/1757-7241-20-59 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!