How critical are the van der Waals interactions in polymer crystals?

J Phys Chem A

Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, USA.

Published: September 2012

van der Waals (vdW) interactions play a prominent role in polymer crystallization. However, density functional theory (DFT) computations that utilize conventional (semi)local exchange-correlation functionals are unable to account for vdW interactions adequately and hence lead to poor predictions of equilibrium structures, densities, cohesive energies, and bulk moduli of polymeric crystals. This study therefore applies two forms of dispersion corrections to DFT, using either the Grimme (DFT-D3/D2) or the Tkatchenko and Scheffler (DFT-TS) approaches. We critically evaluate the relative performance of these two approaches in predicting structural, energetic, and elastic properties for a wide range of polymer crystals and also compare it with conventional electron exchange-correlation functionals (LDA, PBE, and PW91). Our results show that although the conventional functionals either systematically underestimate (e.g., LDA) or overestimate (e.g., PBE and PW91) the lattice parameters that control the polymer interchain interactions in a crystal, the dispersion-corrected functionals consistently provide a better prediction of the structural parameters. In a relative sense, however, the D3 and TS schemes are superior to the D2 approach owing to the environment-dependent atomic dispersion coefficients implicit in the D3 and TS treatments (we do note though that the D2 scheme already constitutes a significant improvement over the (semi)local functionals). Our results not only elucidate the importance of dispersion corrections in the accurate determination of the structural properties of the prototypical polymers considered but also provide a benchmark for comparing other procedures that might be used for including vdW interactions in such systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp3005844DOI Listing

Publication Analysis

Top Keywords

vdw interactions
12
van der
8
der waals
8
exchange-correlation functionals
8
dispersion corrections
8
pbe pw91
8
interactions
5
functionals
5
critical van
4
waals interactions
4

Similar Publications

One-Dimensional Excitonic Insulator of MTe (M = Mo, W) Atomic Wires.

Nano Lett

January 2025

Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.

Coulomb attraction with weak screening can trigger spontaneous exciton formation and condensation, resulting in a strongly correlated many-body ground state, namely, the excitonic insulator. One-dimensional (1D) materials natively have ineffective dielectric screening. For the first time, we demonstrate the excitonic instability of single atomic wires of transition metal telluride MTe (M = Mo, W), a family of 1D van der Waals (vdW) materials accessible in the laboratory.

View Article and Find Full Text PDF

The adsorption of small organic molecules on pristine VC MXene and its derivatives is investigated by first-principles density functional theory calculations. By employing state-of-the-art van der Waals (vdW) density functionals, the binding affinity of studied molecules, , CH, CO, and HO on MXene adsorbents is well described by more recent vdW functionals, , SCAN-rvv10. Although both CH and CO are nonpolar molecules, on pristine and oxygen-vacancy surfaces, they show a different range of adsorption energies, in which CH is more inert and has weaker binding than CO.

View Article and Find Full Text PDF

Linear and nonlinear record high optical birefringence in anisotropic van der Waals crystals.

Light Sci Appl

January 2025

Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany.

Multilayered van der Waals (vdW) materials are semiconductors composed of atomically thin crystal layers, held together by weak vdW forces. They offer unique crystal structures and electronic properties, distinct from conventional semiconductors, making them a promising platform for linear and nonlinear optics. In this context, the large refractive indexes given by highly polarizable transition metals, combined with excitonic resonances and unconventional crystalline structures, provides a toolbox for exploring non-linear physics and strong light-matter interactions with unprecedented opportunities for nanoscale optics.

View Article and Find Full Text PDF

To achieve the commercialization of two-dimensional (2D) semiconductors, the identification of an appropriate combination of 2D semiconductors and three-dimensional (3D) metals is crucial. Furthermore, understanding the van der Waals (vdW) interactions between these materials in thin-film semiconductor processes is essential. Optimizing these interactions requires precise control over the properties of the vdW interface through specific pre- or post-treatment methods.

View Article and Find Full Text PDF

Short-chain fatty acid ethyl esters (SFAEEs) are critical aroma compounds in Baijiu, and their wider concentration range can lead to differences in the quality grade of Baijiu. Efficiently designing an SFAEEs adsorbent before instrument analysis remains challenging. In this work, nine functionalized covalent organic frameworks (COFs) with different postmodification groups were designed for targeting SFAEEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!