Effect of formula compatibility on the pharmacokinetics of components from Dachengqi Decoction [See Text] in rats.

Chin J Integr Med

Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.

Published: September 2012

Objective: To investigate the effect of prescription compatibility on the pharmacokinetics of components from Dachengqi Decoction (DCQD, ) in rats.

Methods: Twenty-four male rats were randomly and equally divided into the DCQD group, Dahuang (Radix et Rhizoma Rhei, Polygonaceae) group, Houpo (Magnolia officinalis Rehd., Magnoliaceae) group, and Zhishi (Fructus Aurantii Immaturus, Rutaceae) group. The blood samples were collected before dosing and subsequently at 10, 15, 20, 30, 45 min, 1, 2, 4, 8, and 12 h following gavage. The levels of aloe-emodin, rhein, emodin, chrysophanol, honokiol, magnolol, hesperidin, and naringin in rat serum were quantified using a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for pharmacokinetic study.

Results: The area under the curve (AUC), mean retention time (MRT), the peak concentration (C(max)) of aloe-emodin, rhein, emodin, and chrysophanol in the DCQD group were significantly different compared with the Dahuang group (P <0.05, respectively). The mean plasma concentration, C(max), and the absorption of Dahuang's component in the DCQD group were obviously lower at each time point than those in the Dahuang group, while the elimination process of Dahuang's component was obviously delayed (P <0.05). Half-lives of aloe-emodin, chrysophanol, and rhein were also extended in the DCQD group (P <0.05, respectively). In the DCQD group, the mean plasma concentration, AUC, C(max) and absorption of honokiol, and magnolol were significantly lower (P <0.01, respectively) at each time point than those in the Houpo group, while the drug distribution half-life time (T(1/2α)), the drug eliminated half-life time (T(1/2β)), MRT, and time of peak concentration (T(max)) were significantly delayed (P <0.05, respectively). Pharmacokinetic parameters of hesperidin and naringin in the Zhishi group were not significantly different as compared with the DCQD group (P >0.05, respectively), while the MRT of naringin was significantly longer.

Conclusions: The compatibility in Chinese medicine could affect the drug's pharmacokinetics in DCQD, which proves that the prescription compatibility principle of Chinese medicine formulations has its own pharmacokinetic basis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11655-012-1205-9DOI Listing

Publication Analysis

Top Keywords

compatibility pharmacokinetics
8
pharmacokinetics components
8
components dachengqi
8
dachengqi decoction
8
dcqd group
8
aloe-emodin rhein
8
rhein emodin
8
emodin chrysophanol
8
group
6
formula compatibility
4

Similar Publications

The application of nanotechnology in medical biology has seen a significant rise in recent years because of the introduction of novel tools that include supramolecular systems, complexes, and composites. Dendrimers are one of the remarkable examples of such tools. These spherical, regularly branching structures with enhanced cell compatibility and bioavailability have shown to be an excellent option for gene or drug administration.

View Article and Find Full Text PDF

NIR Triggered Bionic Bilayer Membrane-Encapsulated Nanoparticles for Synergistic Photodynamic, Photothermal and Chemotherapy of Cervical Cancer.

Int J Nanomedicine

January 2025

State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People's Republic of China.

Purpose: A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect.

Patients And Methods: In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized.

View Article and Find Full Text PDF

Pre-assembled nanospheres in mucoadhesive microneedle patch for sustained release of triamcinolone in the treatment of oral submucous fibrosis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.

Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.

View Article and Find Full Text PDF

Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF.

View Article and Find Full Text PDF

Predicting Pharmacokinetics of Active Constituents in by Using Physiologically Based Pharmacokinetic Models.

Pharmaceuticals (Basel)

December 2024

Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China.

Background/objectives: Spatholobi Caulis (SPC) is a medicinal plant that mainly grows in China and Southeast Asian countries and commonly used in clinics; the pharmacokinetic characteristics in humans need to be determined. This study was to establish the physiologically based pharmacokinetic (PBPK) models of multiple active constituents from SPC in rats, and predict the pharmacokinetic properties of rats with different dosages and extrapolated to humans.

Methods: The parameters were collected based on our previous study and by prediction using ADMET Predictor software predict.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!