Although there has been significant progress in the fabrication and performance optimization of 1-D nanostructure-based deep-ultraviolet photodetectors, it is still a challenge to develop an effective device with high performance characteristics, such as high photocurrent-dark current ratio and high quantum efficiency. Herein, an efficient and simple method to fabricate high performance CuO nanoparticle decorated In(2)Ge(2)O(7) nanobelt deep-ultraviolet photodetectors is presented. A CuO coated In(2)Ge(2)O(7) nanobelt based photodetector showed very high responsivity (7.34 × 10(5) A W(-1)) and high quantum efficiency (3.5 × 10(6)). The underlying mechanism is proposed to be the formation of p-n heterojunctions between decorated nanoparticles and nanobelts, which enhances the spatial separation of photogenerated electrons and holes. This study opens up a new horizon for creation of novel photodetectors with high quantum efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2nr31791eDOI Listing

Publication Analysis

Top Keywords

quantum efficiency
16
in2ge2o7 nanobelt
12
deep-ultraviolet photodetectors
12
high quantum
12
cuo nanoparticle
8
nanoparticle decorated
8
decorated in2ge2o7
8
nanobelt deep-ultraviolet
8
high performance
8
high
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!