Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells, such as cell stiffness, are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Here we reported a new whole-cell cell stiffness measurement technique with a subcellular spatial resolution. This technique was based on a novel cell stretching device that allowed for quantitative control and real-time measurements of mechanical stimuli and cellular biomechanical responses. Our strategy involved a microfabricated array of silicone elastomeric microposts integrated onto a stretchable elastomeric membrane. Using a computer-controlled vacuum, this micropost array membrane (mPAM) was activated to apply equibiaxial cell stretching forces to adherent cells attached on the tops of the microposts. The micropost top positions before and after mPAM stretches were recorded using fluorescence microscopy and further utilized to quantify local cell stretching forces and cell area increments. A robust computation scheme was developed and implemented for subcellular quantifications of cell stiffness using the data of local cell stretching forces and cell area increments generated from mPAM cell stretch assays. Our cell stiffness studies using the mPAM revealed strong positive correlations among cell stiffness, cellular traction force, and cell spread area, and illustrated the important functional roles of actin polymerization and myosin II-mediated cytoskeleton contractility in regulating cell stiffness. Collectively, our work reported a new approach for whole-cell stiffness measurements with a subcellular spatial resolution, which would help likely explain the complex biomechanical functions and force-sensing mechanisms of cells and design better materials for cell and tissue engineering and other applications in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4088946 | PMC |
http://dx.doi.org/10.1039/c2ib20134h | DOI Listing |
Arterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
The lung tumor microenvironment is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic, and immunosuppressive microenvironment that can augment the resistance of lung tumors to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3), and nuclear factor of κB (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy.
View Article and Find Full Text PDFNat Methods
January 2025
Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive-tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:
Since cartilage injury is often accompanied by subchondral bone damage, conventional single-phase materials cannot accurately simulate the osteochondral structure or repair osteochondral injury. In this work, a gradient gelatin-methacryloyl (GelMA) hydrogel scaffold was constructed by a layer-by-layer stacking method to realize full-thickness regeneration of cartilage, calcified cartilage and subchondral bone. Of note, to surmount the inadequate mechanical property of GelMA hydrogel, nanohydroxyapatite (nHA) was incorporated and further functionalized with hydroxyethyl methacrylate (nHA-hydroxyethyl methacrylate, nHAMA) to enhance the interfacial adhesion with the hydrogel, resulting in better mechanical strength akin to human bone.
View Article and Find Full Text PDFJ Endod
January 2025
Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1, King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Dentistry, Mt. Sinai Hospital, Toronto 412-600 University Avenue, Toronto, ON M5G 1X5, Canada. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!