Centrioles are duplicated during S-phase to generate the two centrosomes that serve as mitotic spindle poles during mitosis. The centrosomal pool of the Mps1 kinase is important for centriole assembly, but how Mps1 is delivered to centrosomes is unknown. Here we have identified a centrosome localization domain within Mps1 and identified the mitochondrial porin VDAC3 as a protein that binds to this region of Mps1. Moreover, we show that VDAC3 is present at the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478317 | PMC |
http://dx.doi.org/10.4161/cc.21927 | DOI Listing |
bioRxiv
October 2024
Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
Centrioles play central roles in ciliogenesis and mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, a property essential for maintaining numerical control. How centriole stability is achieved and how it is lost in certain biological contexts are still not completely understood.
View Article and Find Full Text PDFbioRxiv
November 2024
Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD, 20892, USA.
SSNA-1 is a fibrillar protein localized at the area where dynamic microtubule remodeling occurs including centrosomes. Despite the important activities of SSNA1 to microtubules such as nucleation, co-polymerization, and lattice sharing microtubule branching, the underlying molecular mechanism have remained unclear due to a lack of structural information. Here, we determined the cryo-EM structure of SSNA-1 at 4.
View Article and Find Full Text PDFDev Cell
December 2024
Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany. Electronic address:
Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
The primary cilium is a cellular organelle whose assembly and disassembly are closely linked to the cell cycle. The centriole distal appendage (DA) is essential for the early stages of ciliogenesis by anchoring the mother centriole to the cell surface. Despite the identification of over twelve proteins constituting the DA, including CEP83, CEP89, CEP164, FBF1, and SCLT1, their specific functions in ciliary dynamics are not fully understood.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
The centrosome plays a crucial role in facilitating mitotic spindle assembly through its microtubule organizing capacities. Analyzing the composition, structure, and functions of mitotic centrosomes is essential for understanding the mechanisms underlying cell division and centrosome-associated diseases. Isolating centrosomes is an effective method to gain comprehensive information about them while minimizing interference from other cellular components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!