Microfluidic approaches for controlled generation of colloidal clusters, for example, via encapsulation of colloidal particles in droplets, have been used for the synthesis of functional materials including drug delivery carriers. Most of the studies, however, use a low concentration of an original colloidal suspension (<10 wt %). Here we demonstrate microfluidic approaches for directly making droplets with moderate (10-25 wt %) and high (>60 wt %) particle concentrations. Three types of microfluidic devices, PDMS flow-focusing, PDMS T-junction, and microcapillary devices, are investigated for direct encapsulation of a high concentration of polystyrene (PS) nanoparticles in droplets. In particular, it is shown that PDMS devices fabricated by soft lithography can generate droplets from a 25 wt % PS suspension, whereas microcapillary devices made from glass capillary tubes are able to produce droplets from a 67 wt % PS nanoparticle suspension. When the PS concentration is between 0.6 and 25 wt %, the size of the droplets is found to change with the oil-to-water flow rate ratio and is independent of the concentration of particles in the initial suspensions. Drop sizes from ~12 to 40 μm are made using flow rate ratios Q(oil)/Q(water) from 20 to 1, respectively, with either of the PDMS devices. However, clogging occurs in PDMS devices at high PS concentrations (>25 wt %) arising from interactions between the PS colloids and the surface of PDMS devices. Glass microcapillary devices, on the other hand, are resistant to clogging and can produce droplets continuously even when the concentration of PS nanoparticles reaches 67 wt %. We believe that our findings indicate useful approaches and guidelines for the controlled generation of emulsions filled with a high loading of nanoparticles, which are useful for drug delivery applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856230 | PMC |
http://dx.doi.org/10.1021/la3025952 | DOI Listing |
J Colloid Interface Sci
January 2025
Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:
As smart electronic devices proliferate rapidly, concerns about electromagnetic radiation have become more prominent. Traditional electromagnetic shielding materials typically use three-dimensional porous foams, carbon structures, and film materials as their substrates. However, as electronic devices become more miniaturized, integrated, and precise, the large volume and limited functionality of foam materials have constrained their applications.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Emotion, Cognition, & Behavior Research Group, Korea Brain Research Institute 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea. Electronic address:
In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.
View Article and Find Full Text PDFIn Vitro Model
June 2024
3B's Research Group, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, Zona Industrial da Gandra - Avepark, Barco, Guimaraes, 4805-017 Portugal.
Soft microfluidic systems play a pivotal role in personalized medicine, particularly in in vitro diagnostics tools and disease modeling. These systems offer unprecedented precision and versatility, enabling the creation of intricate three-dimensional (3D) tissue models that can closely emulate both physiological and pathophysiological conditions. By leveraging innovative biomaterials and bioinks, soft microfluidic systems can circumvent the current limitations involving the use of polydimethylsiloxane (PDMS), thus facilitating the development of customizable systems capable of sustaining the functions of encapsulated cells and mimicking complex biological microenvironments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.
This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!