Six conformationally restricted BODIPY dyes with fused carbocycles were synthesized to study the effect of conformational mobility on their visible electronic absorption and fluorescence properties. The symmetrically disubstituted compounds (2, 6) have bathochromically shifted absorption and fluorescence spectral maxima compared to those of the respective asymmetrically monosubstituted dyes (1, 5). Fusion of conjugation extending rings to the α,β-positions of the BODIPY core is an especially effective method for the construction of boron dipyrromethene dyes absorbing and emitting at longer wavelengths. The fluorescence quantum yields Φ of dyes 1-6 are high (0.7 ≤ Φ ≤ 1.0). The experimental results are backed up by quantum chemical calculations of the lowest electronic excitations in 1, 2, 5, 6, and corresponding dyes of related chemical structure but without conformational restriction. The effect of the molecular structure on the visible absorption and fluorescence emission properties of 1-6 has been examined as a function of solvent by means of the recent, generalized treatment of the solvent effect, proposed by Catalán (J. Phys. Chem. B 2009, 113, 5951-5960). Solvent polarizability is the primary factor responsible for the small solvent-dependent shifts of the visible absorption and fluorescence emission bands of these dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp305551wDOI Listing

Publication Analysis

Top Keywords

absorption fluorescence
20
visible absorption
12
bodipy dyes
8
fluorescence emission
8
dyes
7
fluorescence
6
visible
4
fluorescence spectroscopy
4
spectroscopy conformationally
4
conformationally constrained
4

Similar Publications

The Wanshan mercury mining area (WMMA) in Guizhou Province, China, has been identified as a region at high ecological risk owing to heavy metal contamination. This study employed non-lethal sampling methods, using the phalanges of Pelophylax nigromaculatus in the WMMA as analytical material. Ten heavy metal (metalloid) elements were selected for analysis, including Hg, Cr, Mn, Ni, Cu, Zn, Cd, Pb, As, and Se.

View Article and Find Full Text PDF

Calcium-organic matter fouling in nanofiltration: Synchrotron-based X-ray fluorescence and absorption near-edge structure spectroscopy for speciation.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.

View Article and Find Full Text PDF

Structural investigation of erdafitinib, an anticancer drug, with ctDNA: A spectroscopic and computational study.

Biochim Biophys Acta Gen Subj

December 2024

Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India. Electronic address:

The interaction of drugs with DNA is crucial for understanding their mechanism of action, particularly in the context of gene expression regulation. Erdafitinib (EDB), a pan-FGFR (fibroblast growth factor receptor) inhibitor approved by the FDA, is a potent anticancer agent used primarily in the treatment of urothelial carcinoma. In this study, the binding interaction between EDB and calf thymus DNA (ctDNA) was assessed using molecular docking, UV-absorption spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy.

View Article and Find Full Text PDF

Freshness in Salmon by Hand-Held Devices: Methods in Feature Selection and Data Fusion for Spectroscopy.

ACS Food Sci Technol

December 2024

National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K.

Salmon fillet was analyzed via hand-held optical devices: fluorescence (@340 nm) and absorption spectroscopy across the visible and near-infrared (NIR) range (400-1900 nm). Spectroscopic measurements were benchmarked with nucleotide assays and potentiometry in an exploratory set of experiments over 11 days, with changes to spectral profiles noted. A second enlarged spectroscopic data set, over a 17 day period, was then acquired, and fillet freshness was classified ±1 day via four machine learning (ML) algorithms: linear discriminant analysis, Gaussian naïve, weighted -nearest neighbors, and an ensemble bagged tree method.

View Article and Find Full Text PDF

Unveiling the Centrosymmetric Effect in the Design of Narrowband Fluorescent Emitters: From Single to Double Difluoroboron Cores.

J Am Chem Soc

December 2024

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China.

Narrowband fluorescent emitters are receiving significant attention due to the great potential for creating ultrahigh-definition organic light-emitting diode displays (UHD-OLED). Unveiling innovative mechanisms to design new high-performance narrowband fluorescent emitters is a concerted endeavor in both academic and industrial circles. Theoretical calculations reveal that the centrosymmetric dianilido-bipyridine boron difluoride framework (-DAPBF) exhibits significantly reduced structural relaxation compared to previously reported asymmetric structures with monofluoroboron cores, creating new opportunities for the development of narrowband fluorescent emitters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!