Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids.

Environ Sci Technol

Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.

Published: October 2012

The dynamics of metal complexation by small humic substances (fulvic acid and aquatic humic acid, collectively denoted as “fulvic-like substance”, FS) are explored within the framework of concepts recently developed for soft nanoparticulate complexants. From a comprehensive collection of published equilibrium and dissociation rate constants for CuFS and NiFS complexes, the association rate constant, ka, is determined as a function of the degree of complexing site occupation, θ. From this large data set, it is shown for the first time that ka is independent of θ. This result has important consequences for finding the nature of the rate limiting step in the association process. The influence of electric effects on the rate of the association process is described, namely (i) the accelerating effect of the negatively charged electrostatic field of FS on the diffusion of metal ions toward it, and (ii) the extent to which metal ions electrostatically accumulate in the counterionic atmosphere of FS. These processes are discussed qualitatively in relation to the derived values of ka. For slowly dehydrating metal ions such as Ni(H2O)6 2+ (dehydration rate constant, kw), ka is expected to derive straight from kw. In contrast, for rapidly dehydrating metal ions such as Cu(H2O)6 2+, transport limitations and electric effects involved in the formation of the precursor outer-sphere associate appear to be important overall rate-limiting factors. This is of great significance for understanding the chemodynamics of humic complexes in the sense that inner-sphere complex formation would not always be the (sole) rate limiting step.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es3018013DOI Listing

Publication Analysis

Top Keywords

metal ions
16
soft nanoparticulate
8
aquatic humic
8
rate constant
8
rate limiting
8
limiting step
8
association process
8
electric effects
8
dehydrating metal
8
rate
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!