16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592464 | PMC |
http://dx.doi.org/10.1093/nar/gks808 | DOI Listing |
J Biol Chem
January 2025
Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada. Electronic address:
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
Nitrogen inputs for sustainable crop production for a growing population require the enhancement of biological nitrogen fixation. Efforts to increase biological nitrogen fixation include bioprospecting for more effective nitrogen-fixing bacteria. As bacterial nitrogenases are extremely sensitive to oxygen, most primary isolation methods rely on the use of semisolid agar or broth to limit oxygen exposure.
View Article and Find Full Text PDFSci Rep
January 2025
Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland.
Rapid advancements in long-read sequencing have facilitated species-level microbial profiling through full-length 16S rRNA sequencing (~ 1500 bp), and more notably, by the newer 16S-ITS-23S ribosomal RNA operon (RRN) sequencing (~ 4500 bp). RRN sequencing is emerging as a superior method for species resolution, exceeding the capabilities of short-read and full-length 16S rRNA sequencing. However, being in its early stages of development, RRN sequencing has several underexplored or understudied elements, highlighting the need for a critical and thorough examination of its methodologies.
View Article and Find Full Text PDFPlant Dis
January 2025
Barani agricultural research institute, Chakwal, chakwal, Punjab, Pakistan;
Crown rot impacted olive plants (cv. Koroneiki) in an orchard in Chakwal, Punjab, Pakistan (32° N, 72° E), with a prevalence of 60%. Observable symptoms included leaf chlorosis, defoliation, wilting, and twig dieback in 6-8-year-old plants, ultimately resulting in their demise (Fig.
View Article and Find Full Text PDF3 Biotech
February 2025
Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, Uttarakhand 248195 India.
The natural population of have not been genetically enumerated due to a lack of genome sequence information or robust species-specific molecular marker. The present study was conducted to develop and validate genome-wide de novo simple sequence repeat (SSRs) markers in through shallow-pass genome sequencing. The genome sequence data of about 13 Gb was generated using Illumina technology, and high-quality sequence reads were de novo assembled into 1,390,995 contigs with GC content 42.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!