A rapid and simple magnetic particle-based immunoassay has been demonstrated in a capillary mixing system. Antibody-coated micrometer size superparamagnetic polystyrene (SPP) particles were used in an assay for rabbit IgG in a sandwich (noncompetitive) format. The kinetics of the assay was compared between a plate-based system and a single capillary tube. The interaction between the antigen (R-IgG) and the antibody (anti-R-IgG) that was carried by the SPP particles in a rotating capillary was tested under a stationary magnetic field. Competing magnetic and viscous drag forces helped to enhance the interaction between the analyte and the capture antibodies on the particles. The dimensionless Mason number (Mn) was employed to characterize the magnetic particle dynamics; a previously determined critical Mason number (Mn(c)) was employed as a guide to the appropriate experimental conditions of magnetic field strength and rotational speed of the capillary. The advantage of the rotating capillary system included a short assay time and a reduced reactive volume (20 μL). The results show that the immunoassay kinetics were improved by the formation of chains of the SPP particles for the conditions that corresponded to the critical Mason number.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463766PMC
http://dx.doi.org/10.1021/ac301848qDOI Listing

Publication Analysis

Top Keywords

rotating capillary
12
magnetic field
12
spp particles
12
mason number
12
magnetic particle
8
particle dynamics
8
capillary tube
8
stationary magnetic
8
critical mason
8
magnetic
7

Similar Publications

Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals.

View Article and Find Full Text PDF

Plasma viscosity measurement is crucial in clinical diagnostics, providing insights into blood rheology and health status. Traditional methods, such as capillary and rotational viscometers, require large sample volumes and complex calibration. This study presents a novel disposable electrochemical sensor with co-facing electrodes for viscosity monitoring of plasma samples.

View Article and Find Full Text PDF

Endoscopic optical coherence tomography (OCT) is widely used in the detection of morphological alterations in luminal organs, which provides high-resolution, three-dimensional (3D) images of internal tissues. In most cases, lesions are revealed early by microvascular pathological changes in cavity tissues. There is a significant demand for the performance of endoscopic OCT angiography (OCTA) to visualize the superficial capillaries.

View Article and Find Full Text PDF

The microvascular bed plays a crucial role in establishing nutrient exchange and waste removal, as well as maintaining tissue metabolic activity in the human body. However, achieving microvascularization of engineered 3D tissue constructs is still an unsolved challenge. In this work, we developed biomimetic cell-laden hydrogel microfibers recapitulating oriented microvascular capillary-like networks by using a 3D bioprinting technique combined with microfluidics-assisted coaxial wet-spinning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!