Graphene nanomesh as highly sensitive chemiresistor gas sensor.

Anal Chem

Department of Mechanical Engineering, University of California, Riverside, California 92521, USA.

Published: October 2012

Graphene is a one atom thick carbon allotrope with all surface atoms that has attracted significant attention as a promising material as the conduction channel of a field-effect transistor and chemical field-effect transistor sensors. However, the zero bandgap of semimetal graphene still limits its application for these devices. In this work, ethanol-chemical vapor deposition (CVD) of a grown p-type semiconducting large-area monolayer graphene film was patterned into a nanomesh by the combination of nanosphere lithography and reactive ion etching and evaluated as a field-effect transistor and chemiresistor gas sensors. The resulting neck-width of the synthesized nanomesh was about ∼20 nm and was comprised of the gap between polystyrene (PS) spheres that was formed during the reactive ion etching (RIE) process. The neck-width and the periodicities of the graphene nanomesh (GNM) could be easily controlled depending on the duration/power of the RIE and the size of the PS nanospheres. The fabricated GNM transistor device exhibited promising electronic properties featuring a high drive current and an I(ON)/I(OFF) ratio of about 6, significantly higher than its film counterpart. Similarly, when applied as a chemiresistor gas sensor at room temperature, the graphene nanomesh sensor showed excellent sensitivity toward NO(2) and NH(3), significantly higher than their film counterparts. The ethanol-based graphene nanomesh sensors exhibited sensitivities of about 4.32%/ppm in NO(2) and 0.71%/ppm in NH(3) with limits of detection of 15 and 160 ppb, respectively. Our demonstrated studies on controlling the neck width of the nanomesh would lead to further improvement of graphene-based transistors and sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861156PMC
http://dx.doi.org/10.1021/ac3012895DOI Listing

Publication Analysis

Top Keywords

graphene nanomesh
16
chemiresistor gas
12
field-effect transistor
12
gas sensor
8
reactive ion
8
ion etching
8
higher film
8
graphene
7
nanomesh
6
nanomesh highly
4

Similar Publications

Article Synopsis
  • * Extensive measurements on a single chip help to evaluate the electrical properties of these nanomesh structures, which are crucial for energy harvesting applications.
  • * The triangle nanomesh structure outperforms the others with excellent characteristics, including a 420 Ω differential resistance, responsivity over 10 V/W, and a low noise equivalent power of 847 pW/√Hz at 0 V.
View Article and Find Full Text PDF

Controllable defects in monolayer graphene induced by hydrogen and argon plasma.

J Phys Condens Matter

May 2024

National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.

Graphene has attracted wide attentions since its successfully exfoliation. Honeycombcarbon lattice and Dirac semi-metal band structure make graphene a promising material with excellent mechanical strength, thermal conductivity, and carrier mobility. However, the absence of intrinsic bandgap limits its application in semiconductor.

View Article and Find Full Text PDF

The adsorption, reaction and thermal stability of bromine on Rh(111)-supported hexagonal boron nitride (-BN) and graphene were investigated. Synchrotron radiation-based high-resolution x-ray photoelectron spectroscopy (XPS) and temperature-programmed XPS allowed us to follow the adsorption process and the thermal evolutionon the molecular scale. On-BN/Rh(111), bromine adsorbs exclusively in the pores of the nanomesh while we observe no such selectivity for graphene/Rh(111).

View Article and Find Full Text PDF

Two-Dimensional Metal Organic Framework derived Nitrogen-doped Graphene-like Carbon Nanomesh toward Efficient Electromagnetic Wave Absorption.

J Colloid Interface Sci

August 2023

School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China. Electronic address:

Functional two-dimensional (2D) graphene-like carbon has the potential to be a good electromagnetic wave absorbing material due to its good electronic properties, but the preparation of 2D carbon via metal-organic frameworks (MOFs) derivation method is still a bottleneck. Herein, we fabricated ultrathin nitrogen-doped graphene-like carbon nanomesh (N-GN) via thermal exfoliation of 2D MOF (Zn-ZIF-L) directly. The species of the chloride salt that exfoliated Zn-ZIF-L have an effect on the nitrogen content, graphitization degree, pore size and specific surface area of N-GN.

View Article and Find Full Text PDF

Synthesis of graphene nanomesh with symmetrical fractal patterns via hydrogen-free chemical vapor deposition.

Nanotechnology

November 2022

MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.

Graphene nanomesh (GNM), an emerging graphene nanostructure with a tunable bandgap, has gained tremendous interests owing to its great potentials in the fields of high-performance field-effect transistors, electrochemical sensors, new generation of spintronics and energy converters. In previous works, GNM has been successfully obtained on copper foil surface by employing hydrogen as an etching agent. A more facile, and low-cost strategy for the preparation of GNM is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!