Chemotaxis by Bacillus subtilis requires the CheD protein for proper function. In a cheD mutant when McpB was the sole chemoreceptor in B. subtilis, chemotaxis to asparagine was quite good. When McpC was the sole chemoreceptor in a cheD mutant, chemotaxis to proline was very poor. The reason for the difference between the chemoreceptors is because CheD deamidates Q609 in McpC and does not deamidate McpB. When mcpC-Q609E is expressed as the sole chemoreceptor in a cheD background, chemotaxis is almost fully restored. Concomitantly, in vitro McpC activates the CheA kinase poorly, whereas McpC-Q609E activates it much more. Moreover, CheD, which activates chemoreceptors, binds better to McpC-Q609E compared with unmodified McpC. Using hydroxyl radical susceptibility in the presence or absence of CheD, the most likely sites of CheD binding were the modification sites where CheD, CheB and CheR carry out their catalytic activities. Thus, CheD appears to have two separate roles in B. subtilis chemotaxis - to bind to chemoreceptors to activate them as part of the CheC/CheD/CheYp adaptation system and to deamidate selected residues to activate the chemoreceptors and enable them to mediate amino acid chemotaxis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480970PMC
http://dx.doi.org/10.1111/mmi.12015DOI Listing

Publication Analysis

Top Keywords

sole chemoreceptor
12
ched
11
bacillus subtilis
8
ched mutant
8
b subtilis chemotaxis
8
chemoreceptor ched
8
sites ched
8
chemotaxis
7
elucidation multiple
4
multiple roles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!