Dopamine-modified clay (D-clay) was successfully dispersed into polyether polyurethane (PU) by solvent blending. It is found that the incorporation of D-clay into PU gives rise to significant improvements in mechanical properties, including initial modulus, tensile strength, and ultimate elongation, at a very low clay loading. The large reinforcement could be attributed to the hydrogen bonds between the hard segments of PU and stiff D-clay layers that lead to more effective interfacial stress transfer between the polymer and D-clay. Besides, the interactions between D-clay and PU are also stronger than those between Cloisite 30B organoclay and the PU chains. Consequently, at a similar clay loading, the PU/D-clay nanocomposite has much higher storage modulus than the PU/organoclay nanocomposite at elevated temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am300947bDOI Listing

Publication Analysis

Top Keywords

polyether polyurethane
8
dopamine-modified clay
8
clay loading
8
d-clay
5
reinforcement polyether
4
polyurethane dopamine-modified
4
clay
4
clay role
4
role interfacial
4
interfacial hydrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!