Hydrodynamics of capillary imbibition under nanoconfinement.

Langmuir

Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

Published: October 2012

Understanding fluid flow in nanoconfined geometries is crucial for a broad range of scientific problems relevant to the behavior of porous materials in biology, nanotechnology, and the built environment. Because of the dominant importance of surface effects at the nanoscale, long-standing assumptions that are valid for macroscopic systems must be revisited when modeling nanoconfined fluids, because boundary conditions and the confined behavior of liquids are challenging to discern from experiments. To address this issue, here we present a novel coarse-grained model that combines parameters calibrated for water with a dissipative particle dynamics thermostat for the purpose of investigating hydrodynamics under confinement at scales exceeding current capabilities with all-atomistic simulations. Conditions pertaining to slip boundary conditions and confinement emerge naturally from particle interactions, with no need for assumptions a priori. The model is used to systematically investigate the imbibition dynamics of water into cylindrical nanopores of different diameters. Interestingly, we find that the dynamic contact angle depends on the size of the nanopore in a way that cannot be explained through a relationship between contact line velocity and dynamic contact angle, suggesting nonlocal effects of the flow field may be important. Additionally, a size-dependent characteristic time scale for imbibition is found, which could be useful for the interpretation of experiments and design of novel nanofluidic devices. We present the first systematic study that explains how contact angle dynamics and imbibition dynamics vary with nanopore radius. Our modeling approach lays the foundation for broader investigations on the dynamics of fluids in nanoporous materials in conjunction with experimental efforts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la302292wDOI Listing

Publication Analysis

Top Keywords

contact angle
12
boundary conditions
8
imbibition dynamics
8
dynamic contact
8
dynamics
5
hydrodynamics capillary
4
imbibition
4
capillary imbibition
4
imbibition nanoconfinement
4
nanoconfinement understanding
4

Similar Publications

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan.

Polymers (Basel)

January 2025

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.

The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.

View Article and Find Full Text PDF

Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal-Polymer Hybrid Structures.

Polymers (Basel)

January 2025

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.

The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.

View Article and Find Full Text PDF

This study aims to build an optimal drug delivery system by manufacturing and evaluating a hydrogel contact lens using Tretinoin (ATRA) and protein nanoparticles to improve the drug delivery system as an ophthalmic medical contact lens. To evaluate the optical and physical properties of the manufactured lens, the spectral transmittance, refractive index, water content, contact angle, AFM, tensile strength, drug delivery, and antibacterial properties were analyzed. The contact lens was manufactured to contain ATRA and bovine serum albumin (BSA) in different ways, and the results confirmed that A, B, and C each had different physical properties.

View Article and Find Full Text PDF

Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!